Let's make it personal: CRISPR tools in manipulating cell death pathways for cancer treatment.

IF 5.3 2区 医学 Q2 CELL BIOLOGY Cell Biology and Toxicology Pub Date : 2024-07-29 DOI:10.1007/s10565-024-09907-z
Mobina Bayat, Javid Sadri Nahand
{"title":"Let's make it personal: CRISPR tools in manipulating cell death pathways for cancer treatment.","authors":"Mobina Bayat, Javid Sadri Nahand","doi":"10.1007/s10565-024-09907-z","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"61"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09907-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
让我们把它变成个人的:利用CRISPR工具操纵细胞死亡途径以治疗癌症。
CRISPR 技术的进步改变了实验研究的游戏规则,彻底改变了生命科学的各个领域,更深刻地改变了癌症研究。细胞死亡途径是癌细胞中最为失调的途径之一,被认为是癌症发展的关键环节。经过几十年的发展,我们对细胞程序性死亡机制的了解大幅增加,这要归功于尖端技术的革命。CRISPR 系统的英勇出现扩大了可用的筛选平台和基因组工程工具箱,以检测突变和创建精确的基因组编辑。在此背景下,该系统能够精确识别和靶向导致癌症发展和耐药性的细胞死亡信号通路中的突变,是转变和加速癌症个体化治疗的有利选择。个体化癌症治疗的概念建立在对个体肿瘤及其微环境的分子特征进行识别的基础上,以便提供疗效最好、毒性最小的精确治疗。这项研究通过识别和靶向特定的细胞死亡通路,探索了 CRISPR 技术在癌症精准治疗中的潜力。研究表明,CRISPR 有望找到程序性细胞死亡的关键成分和突变,使其成为癌症靶向治疗的潜在工具。不过,这项研究也强调了未来研究中需要解决的挑战和局限性,以充分发挥CRISPR在癌症治疗中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
期刊最新文献
Advancing gastric cancer treatment: nanotechnology innovations and future prospects. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Correction to: Activation of lipophagy ameliorates cadmium‑induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas. GRK2 mediates cisplatin-induced acute liver injury via the modulation of NOX4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1