Role of mitochondria in endogenous renal repair.

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical science Pub Date : 2024-08-07 DOI:10.1042/CS20231331
Sara Kazeminia, Alfonso Eirin
{"title":"Role of mitochondria in endogenous renal repair.","authors":"Sara Kazeminia, Alfonso Eirin","doi":"10.1042/CS20231331","DOIUrl":null,"url":null,"abstract":"<p><p>Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20231331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体在内源性肾脏修复中的作用。
肾小管在轻度至中度损伤后具有再生和修复的潜力。肾小管上皮细胞的增殖是这一修复过程的第一步。尽管多年来,人们一直认为增殖细胞来源于原有的肾小管内干细胞群,但现在人们一致认为,存活的肾小管上皮细胞具有祖细胞特性,可使受损肾脏再生。散在肾小管样细胞(STCs)是已分化的成体肾小管上皮细胞,在损伤后出现,通过替代失去的邻近肾小管上皮细胞,促进肾脏自我愈合和恢复。这些细胞的特征是共同表达干细胞表面标志物 CD133 和 CD24,以及间充质和肾损伤标志物。先前的研究表明,在急性肾损伤的小鼠模型中,外源性输送 STCs 可改善肾损伤和肾功能障碍,这凸显了这一内源性修复系统的再生潜力。虽然与周围终末分化的肾小管上皮细胞相比,STCs含有较少的线粒体,但这些细胞器可调节多种重要的细胞功能,其完整性和功能对于保持STCs的修复能力至关重要。最近的数据表明,肥胖、高血压和肾缺血等心血管风险因素诱发的微缺血可能会损害 STC 线粒体的完整性和功能,从而限制这些细胞修复受损肾小管的能力。这篇综述总结了目前有关 STC 对肾脏修复的贡献的知识,并讨论了线粒体在调节 STC 功能方面的关键作用及其在心血管疾病环境中的脆弱性的最新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
期刊最新文献
The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Commentary: the perspectives of harnessing the power of scattered tubular-like cells for renal repair. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Complex regulation of tau phosphorylation by the endothelin system in brain microvascular endothelial cells (BMVECs): link to barrier function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1