{"title":"KGRLFF: Detecting Drug-Drug Interactions Based on Knowledge Graph Representation Learning and Feature Fusion.","authors":"Xiaoli Lin, Zhuang Yin, Xiaolong Zhang, Jing Hu","doi":"10.1109/TCBB.2024.3434992","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of drug-drug interactions (DDIs) plays an important role in improving the efficiency of drug development and ensuring the safety of combination therapy. Most existing models rely on a single source of information to predict DDIs, and few models can perform tasks on biomedical knowledge graphs. This paper proposes a new hybrid method, namely Knowledge Graph Representation Learning and Feature Fusion (KGRLFF), to fully exploit the information from the biomedical knowledge graph and molecular structure of drugs to better predict DDIs. KGRLFF first uses a Bidirectional Random Walk sampling method based on the PageRank algorithm (BRWP) to obtain higher-order neighborhood information of drugs in the knowledge graph, including neighboring nodes, semantic relations, and higher-order information associated with triple facts. Then, an embedded representation learning model named Knowledge Graph-based Cyclic Recursive Aggregation (KGCRA) is used to learn the embedded representations of drugs by recursively propagating and aggregating messages with drugs as both the source and destination. In addition, the model learns the molecular structures of the drugs to obtain the structured features. Finally, a Feature Representation Fusion Strategy (FRFS) was developed to integrate embedded representations and structured feature representations. Experimental results showed that KGRLFF is feasible for predicting potential DDIs.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3434992","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of drug-drug interactions (DDIs) plays an important role in improving the efficiency of drug development and ensuring the safety of combination therapy. Most existing models rely on a single source of information to predict DDIs, and few models can perform tasks on biomedical knowledge graphs. This paper proposes a new hybrid method, namely Knowledge Graph Representation Learning and Feature Fusion (KGRLFF), to fully exploit the information from the biomedical knowledge graph and molecular structure of drugs to better predict DDIs. KGRLFF first uses a Bidirectional Random Walk sampling method based on the PageRank algorithm (BRWP) to obtain higher-order neighborhood information of drugs in the knowledge graph, including neighboring nodes, semantic relations, and higher-order information associated with triple facts. Then, an embedded representation learning model named Knowledge Graph-based Cyclic Recursive Aggregation (KGCRA) is used to learn the embedded representations of drugs by recursively propagating and aggregating messages with drugs as both the source and destination. In addition, the model learns the molecular structures of the drugs to obtain the structured features. Finally, a Feature Representation Fusion Strategy (FRFS) was developed to integrate embedded representations and structured feature representations. Experimental results showed that KGRLFF is feasible for predicting potential DDIs.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system