Detecting adolescent depression in social media: A hierarchical ensemble learning approach

Tianyu Sheng, Wenzhen Cai, Junlin Huang, Zhaosheng Dong
{"title":"Detecting adolescent depression in social media: A hierarchical ensemble learning approach","authors":"Tianyu Sheng, Wenzhen Cai, Junlin Huang, Zhaosheng Dong","doi":"10.54254/2753-8818/43/20240763","DOIUrl":null,"url":null,"abstract":"As digital landscapes evolve, adolescents increasingly rely on social media platforms for self-expression, leading to the vast dissemination of their mental and emotional states. Amidst the physiological and psychological transitions characteristic of adolescence, there is a heightened risk of depressive disorders. These shifts, coupled with the dynamic nature of their online expressions, create a compelling case for detecting latent signs of depression within their digital footprints. This thesis delves into the intersection of Natural Language Processing (NLP) and adolescent depression detection, introducing an innovative hierarchical ensemble model tailored for the intricate task of identifying depressive markers in adolescent social media content. This model amalgamates traditional word embeddings with state-of-the-art pretrained models, encapsulating both sentence-level and word-level representations. Empirical validation, conducted on a unique dataset centered on adolescent depression detection, indicates the models superior efficacy over existing baselines. By offering an ensemble approach that captures the nuances of adolescent linguistic expressions, this research illuminates the potential for timely and non-intrusive interventions in adolescent mental health.","PeriodicalId":341023,"journal":{"name":"Theoretical and Natural Science","volume":"13 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2753-8818/43/20240763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As digital landscapes evolve, adolescents increasingly rely on social media platforms for self-expression, leading to the vast dissemination of their mental and emotional states. Amidst the physiological and psychological transitions characteristic of adolescence, there is a heightened risk of depressive disorders. These shifts, coupled with the dynamic nature of their online expressions, create a compelling case for detecting latent signs of depression within their digital footprints. This thesis delves into the intersection of Natural Language Processing (NLP) and adolescent depression detection, introducing an innovative hierarchical ensemble model tailored for the intricate task of identifying depressive markers in adolescent social media content. This model amalgamates traditional word embeddings with state-of-the-art pretrained models, encapsulating both sentence-level and word-level representations. Empirical validation, conducted on a unique dataset centered on adolescent depression detection, indicates the models superior efficacy over existing baselines. By offering an ensemble approach that captures the nuances of adolescent linguistic expressions, this research illuminates the potential for timely and non-intrusive interventions in adolescent mental health.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测社交媒体中的青少年抑郁症:分层集合学习法
随着数字环境的发展,青少年越来越依赖社交媒体平台进行自我表达,导致他们的心理和情绪状态被大量传播。在青春期特有的生理和心理转变过程中,患抑郁症的风险增加。这些转变,再加上他们在网上表达的动态性质,为在他们的数字足迹中检测抑郁症的潜在迹象提供了令人信服的理由。本论文深入探讨了自然语言处理(NLP)与青少年抑郁检测的交叉点,引入了一个创新的分层组合模型,该模型专为识别青少年社交媒体内容中的抑郁标记这一复杂任务而量身定制。该模型将传统的单词嵌入与最先进的预训练模型相结合,同时包含句子级和单词级表征。在以青少年抑郁检测为中心的独特数据集上进行的经验验证表明,该模型的功效优于现有的基线模型。通过提供一种能捕捉青少年语言表达细微差别的集合方法,这项研究揭示了对青少年心理健康进行及时、非侵入性干预的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Restoring the acidifying function of lysosomes for Alzheimer's disease therapy MRI phenotype mediates the association between APOE4 and AD: A cross-sectional study A momentum quantification method for tennis matches based on t-SNE and k means clustering Practical quantitative research on technological impact on Australia post facilities' processing capacity The comparison of sodium sulfacetamide and erythromycin in treating trachoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1