Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2024-07-26 DOI:10.3390/photonics11080695
L. V. Ermakova, V. Smyslova, Valery V. Dubov, P. Karpyuk, Petr S. Sokolov, I. Komendo, A. Bondarau, Vitaly Mechinsky, Mikhail V. Korzhik
{"title":"Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing","authors":"L. V. Ermakova, V. Smyslova, Valery V. Dubov, P. Karpyuk, Petr S. Sokolov, I. Komendo, A. Bondarau, Vitaly Mechinsky, Mikhail V. Korzhik","doi":"10.3390/photonics11080695","DOIUrl":null,"url":null,"abstract":"Dense and transparent ceramic samples of a (Gd,Y)3Al2Ga3O12:Ce scintillator were obtained by using stereolithography-based Digital Light Processing (DLP) 3D printing for compacting, subsequent burnout, and pressureless sintering. The effects of stoichiometric deviations and green body compaction methods (uniaxial pressing versus DLP 3D printing) on the optical, luminescent, and scintillation properties of ceramics were analyzed. An excess of Y and Gd in the composition led to an increase in transmittance and to the acceleration of the scintillation kinetics. Moreover, transparent ceramics made of 3D-printed green bodies were found to be superior in light yield to the samples, which were prepared from the same powders and densified by uniaxial pressing.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11080695","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dense and transparent ceramic samples of a (Gd,Y)3Al2Ga3O12:Ce scintillator were obtained by using stereolithography-based Digital Light Processing (DLP) 3D printing for compacting, subsequent burnout, and pressureless sintering. The effects of stoichiometric deviations and green body compaction methods (uniaxial pressing versus DLP 3D printing) on the optical, luminescent, and scintillation properties of ceramics were analyzed. An excess of Y and Gd in the composition led to an increase in transmittance and to the acceleration of the scintillation kinetics. Moreover, transparent ceramics made of 3D-printed green bodies were found to be superior in light yield to the samples, which were prepared from the same powders and densified by uniaxial pressing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数字光处理三维打印技术压制绿色体获得的(Gd,Y)3Al2Ga3O12:Ce 陶瓷的闪烁和发光特性
通过使用基于立体光刻技术的数字光处理(DLP)三维打印技术进行压制、后续烧结和无压烧结,获得了(Gd,Y)3Al2Ga3O12:Ce闪烁体的致密透明陶瓷样品。分析了化学计量偏差和绿色体压制方法(单轴压制与 DLP 三维打印)对陶瓷的光学、发光和闪烁特性的影响。成分中过量的 Y 和 Gd 会导致透射率增加和闪烁动力学加速。此外,还发现由三维打印绿色体制成的透明陶瓷在光产率方面优于由相同粉末制备并通过单轴压制致密的样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
High-Precision Temperature Control of Laser Crystals A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback Analyses of an Ultra-Wideband Absorber from UV-B to Middle-IR Utilizing a Square Nanopillar and a Square Hollow Embedded in a Square Cavity of the Top Layer of Multilayer Metamaterials Interferometrically Enhanced Intensity and Wavelength Modulation in Tunable Diode Laser Spectroscopy Efficient Depth Measurement for Live Control of Laser Drilling Process with Optical Coherence Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1