Estimating risk levels for blood pressure and thyroid hormone using artificial intelligence methods

Musab T. S. Al-Kaltakchi, R. Al-Nima, Azza Alhialy
{"title":"Estimating risk levels for blood pressure and thyroid hormone using artificial intelligence methods","authors":"Musab T. S. Al-Kaltakchi, R. Al-Nima, Azza Alhialy","doi":"10.24425/ijet.2024.149595","DOIUrl":null,"url":null,"abstract":"In this work, artificial intelligence methods are designed and adopted for evaluating various risk levels of thyroid hormone and blood pressure in humans. Fuzzy Logic (FL) method is firstly exploited to provide the risk levels. Additionally, a machine learning was proposed using the Adaptive Neuron- Fuzzy Inference System (ANFIS) to learn and assess the risk levels by fusing a multiple-layer Neural Network (NN) with the FL. The data are collected for standard risk levels from real medical centers. The results lead to well ANFIS design based on the FL, which can generate such interesting outcomes for predicting risk levels for thyroid hormone and blood pressure. Both proposed methods of the FL and ANFIS can be exploited for medical applications.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2024.149595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, artificial intelligence methods are designed and adopted for evaluating various risk levels of thyroid hormone and blood pressure in humans. Fuzzy Logic (FL) method is firstly exploited to provide the risk levels. Additionally, a machine learning was proposed using the Adaptive Neuron- Fuzzy Inference System (ANFIS) to learn and assess the risk levels by fusing a multiple-layer Neural Network (NN) with the FL. The data are collected for standard risk levels from real medical centers. The results lead to well ANFIS design based on the FL, which can generate such interesting outcomes for predicting risk levels for thyroid hormone and blood pressure. Both proposed methods of the FL and ANFIS can be exploited for medical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能方法估算血压和甲状腺激素的风险水平
在这项工作中,设计并采用了人工智能方法来评估人体甲状腺激素和血压的各种风险水平。首先利用模糊逻辑(FL)方法提供风险等级。此外,还提出了一种使用自适应神经元-模糊推理系统(ANFIS)的机器学习方法,通过将多层神经网络(NN)与模糊逻辑(FL)相融合来学习和评估风险水平。数据是从实际医疗中心收集的标准风险等级数据。结果表明,基于 FL 的 ANFIS 设计很好,可以产生预测甲状腺激素和血压风险水平的有趣结果。所提出的 FL 和 ANFIS 方法均可用于医疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Bandwidth enhancement of circular structure microstrip antenna based on inverted C-shaped ground configuration Experimental validation of asymmetric PZT optimal shape in the active vibration reduction of triangular plates Mobile (wireless) telecommunication sector: an Indian perspective and PESTLE analysis Enhanced optimization model decision efficient multi product retail Subjective tests of speaker recognition for selected voice disguise techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1