Smartphone-Readable Optical-Fiber Quasi-Distributed Phosphorescent Temperature Sensor

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.3390/photonics11080694
T. Eftimov, I. Kostova, S. Fouzar, D. Brabant, Kristian Nikolov, Veselin Vladev
{"title":"Smartphone-Readable Optical-Fiber Quasi-Distributed Phosphorescent Temperature Sensor","authors":"T. Eftimov, I. Kostova, S. Fouzar, D. Brabant, Kristian Nikolov, Veselin Vladev","doi":"10.3390/photonics11080694","DOIUrl":null,"url":null,"abstract":"In this paper we present the principle of operation, fabrication and performance of a phosphorescent optical-fiber quasi-distributed sensor with contactless smartphone interrogation. An array of short strong corrugated long-period gratings (C-LPG) is used as a platform to spatially locate and to excite the phosphors whose time responses are temperature-dependent. The C-LPG array was fabricated using a pulsed CO2 laser. The quasi-distributed sensing array is excited by a UV LED and the normalized differential rise/decay time response measured by a smartphone is used as a measure of the temperature. The sensing spots have a volume smaller than 0.5 μL, can be separated by several millimeters to several meters and the interrogation can be simultaneous or in a sequence. The response and the sensitivity to temperature have been measured. The sensing array has been shown to measure abrupt and gradual temperature changes in space as well as time-dependent processes in the 0 °C to 100 °C range and with a measurement time of 1 s.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"43 16","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11080694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present the principle of operation, fabrication and performance of a phosphorescent optical-fiber quasi-distributed sensor with contactless smartphone interrogation. An array of short strong corrugated long-period gratings (C-LPG) is used as a platform to spatially locate and to excite the phosphors whose time responses are temperature-dependent. The C-LPG array was fabricated using a pulsed CO2 laser. The quasi-distributed sensing array is excited by a UV LED and the normalized differential rise/decay time response measured by a smartphone is used as a measure of the temperature. The sensing spots have a volume smaller than 0.5 μL, can be separated by several millimeters to several meters and the interrogation can be simultaneous or in a sequence. The response and the sensitivity to temperature have been measured. The sensing array has been shown to measure abrupt and gradual temperature changes in space as well as time-dependent processes in the 0 °C to 100 °C range and with a measurement time of 1 s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能手机可读取的光纤准分布式磷光温度传感器
在本文中,我们介绍了具有非接触式智能手机询问功能的磷光光纤准分布式传感器的工作原理、制造和性能。短强波纹长周期光栅(C-LPG)阵列被用作空间定位和激发磷光体的平台,磷光体的时间响应与温度有关。C-LPG 阵列是用脉冲 CO2 激光器制作的。准分布式传感阵列由紫外 LED 激发,智能手机测量的归一化差分上升/衰减时间响应可用作温度测量。传感点的体积小于 0.5 μL,间距从几毫米到几米不等,可同时或依次进行检测。对温度的响应和灵敏度进行了测量。结果表明,该传感阵列可以测量空间温度的突变和渐变,以及 0 °C 至 100 °C 范围内的随时间变化的过程,测量时间为 1 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Smartphone-Based Fe-ZIF Nanozyme-Driven Colorimetric Sensing Platform for In Situ Visual Detection of Glyphosate Residues on Fresh Tea Leaves. NIR-II Polymer Dots for Real-Time Navigating Hepatic Resection and Hepatic Ischemia-Reperfusion Injury. Bacterial Nanocellulose Effect into Wettability and Thermal Stability of Carbon Fiber via Layer-by-Layer for LED Circuit Application. Synthesis and Acidic pH-Responsive Disassembly of Dual-Location Shell-Sheddable/Core-Degradable Block Copolymer Nanoassemblies and Their Controlled Drug Delivery. Correction to "Hydrophilic Coating Microstructure Mediates Acute Drug Transfer in Drug-Coated Balloon Therapy".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1