Unraveling the Dominant Size Effect in Polydisperse Solutions and Maximal Electric Field Enhancement of Gold Nanoparticles

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.3390/photonics11080691
Quang Truong Pham, Gia Long Ngo, Chi Thanh Nguyen, Isabelle Ledoux-Rak, N. D. Lai
{"title":"Unraveling the Dominant Size Effect in Polydisperse Solutions and Maximal Electric Field Enhancement of Gold Nanoparticles","authors":"Quang Truong Pham, Gia Long Ngo, Chi Thanh Nguyen, Isabelle Ledoux-Rak, N. D. Lai","doi":"10.3390/photonics11080691","DOIUrl":null,"url":null,"abstract":"In this study, we systematically investigate theoretically and experimentally the plasmonic effect and roles of big and small gold nanoparticles (Au NPs) within a mixed solution. The polydisperse solution was initially prepared by mixing small (10, 30 nm) Au NPs with larger ones (50, 80 nm), followed by measuring the extinction using ultraviolet–visible (UV-vis) spectroscopy. The experimental results clearly showed that the extinction of the mixed solution is predominantly influenced by the presence of the larger NPs, even though their quantity is small. Subsequently, we conducted simulations to explore the plasmonic properties of Au NPs of different sizes as well as their mixings and to validate the experimental results. To explain the deviation of the extinction spectra between experimental observations and simulations, we elaborated a simulation model involving the mixture of spherical Au NPs with ellipsoidal NPs, thus showing agreement between the simulation and the experiment. By performing simulations of plasmonic near-field of NPs, our investigation revealed that the maximal electric field intensity does not occur precisely at the plasmonic resonant wavelength but rather at a nearby redder wavelength. The optimal size of the Au NP dispersed in water for achieving the highest field enhancement was found to be 60 nm, with an excitation wavelength of 553.7 nm. These interesting findings not only enrich our understanding of plasmonic NPs’ optical behavior but also guide researchers for potential applications in various domains.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"30 7","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11080691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we systematically investigate theoretically and experimentally the plasmonic effect and roles of big and small gold nanoparticles (Au NPs) within a mixed solution. The polydisperse solution was initially prepared by mixing small (10, 30 nm) Au NPs with larger ones (50, 80 nm), followed by measuring the extinction using ultraviolet–visible (UV-vis) spectroscopy. The experimental results clearly showed that the extinction of the mixed solution is predominantly influenced by the presence of the larger NPs, even though their quantity is small. Subsequently, we conducted simulations to explore the plasmonic properties of Au NPs of different sizes as well as their mixings and to validate the experimental results. To explain the deviation of the extinction spectra between experimental observations and simulations, we elaborated a simulation model involving the mixture of spherical Au NPs with ellipsoidal NPs, thus showing agreement between the simulation and the experiment. By performing simulations of plasmonic near-field of NPs, our investigation revealed that the maximal electric field intensity does not occur precisely at the plasmonic resonant wavelength but rather at a nearby redder wavelength. The optimal size of the Au NP dispersed in water for achieving the highest field enhancement was found to be 60 nm, with an excitation wavelength of 553.7 nm. These interesting findings not only enrich our understanding of plasmonic NPs’ optical behavior but also guide researchers for potential applications in various domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示多分散溶液中的主导尺寸效应和金纳米粒子的最大电场增强效应
在本研究中,我们从理论和实验两方面系统地研究了混合溶液中大小金纳米粒子(Au NPs)的等离子效应及其作用。首先将小(10、30 nm)金纳米粒子与大(50、80 nm)金纳米粒子混合,制备出多分散溶液,然后使用紫外可见(UV-vis)光谱测量消光。实验结果清楚地表明,混合溶液的消光主要受大颗粒金氧化物的影响,尽管它们的数量很少。随后,我们进行了模拟,以探索不同尺寸金氧化物的等离子特性及其混合情况,并验证实验结果。为了解释实验观察和模拟结果之间消光光谱的偏差,我们建立了一个涉及球形 Au NPs 与椭圆形 NPs 混合的模拟模型,从而显示了模拟和实验之间的一致性。通过对 NPs 的等离子近场进行模拟,我们的研究发现,最大电场强度并不精确地出现在等离子共振波长处,而是出现在附近的较红波长处。研究发现,分散在水中的金 NP 的最佳尺寸为 60 nm,激发波长为 553.7 nm,从而获得最高的电场增强效果。这些有趣的发现不仅丰富了我们对等离子 NP 光学行为的理解,还为研究人员在各个领域的潜在应用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A DNA Aptamer as a Chemical Tool to Modulate MEX3C-Mediated mRNA Destabilization. Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1