{"title":"Transport Properties of Internally Cured Self Compacting Concrete with Fly Ash","authors":"J. Shanmugapriya, K. Chinnaraju","doi":"10.32047/cwb.2024.29.1.1","DOIUrl":null,"url":null,"abstract":"Proper curing of concrete has a major beneficial effect on the transport properties of concrete which in turn influences its durability. This paper attempts to study the effect of fly ash on the transport properties of internally cured Self-Compacting Concrete specimens under ambient conditions. Two internal curing materials, Lightweight Expanded Clay Aggregates [LECA] and Superabsorbent Polymer [SAP] were chosen for the study. Properties such as sorptivity, resistance to chloride ion penetration and chloride ion migration specimens with varying percentages of fly ash replacement from 30% to 50% are presented under different curing conditions namely conventional curing, sealed curing with internal curing materials and ambient curing with internal curing materials. The results showed that the impermeability of concrete improved with an increasing percentage of fly ash replacements owing to the presence of internal curing water to improve hydration along with fly ash that moderates the heat of hydration and drying. The internal curing efficiency also improved with the increase in the percentage of fly ash replacement. Under ambient conditions, the mixes with fly ash above 45% replacement have shown very good mechanical and durability properties indicating a refined pore structure leading to enhanced transport properties.","PeriodicalId":55632,"journal":{"name":"Cement Wapno Beton","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement Wapno Beton","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32047/cwb.2024.29.1.1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proper curing of concrete has a major beneficial effect on the transport properties of concrete which in turn influences its durability. This paper attempts to study the effect of fly ash on the transport properties of internally cured Self-Compacting Concrete specimens under ambient conditions. Two internal curing materials, Lightweight Expanded Clay Aggregates [LECA] and Superabsorbent Polymer [SAP] were chosen for the study. Properties such as sorptivity, resistance to chloride ion penetration and chloride ion migration specimens with varying percentages of fly ash replacement from 30% to 50% are presented under different curing conditions namely conventional curing, sealed curing with internal curing materials and ambient curing with internal curing materials. The results showed that the impermeability of concrete improved with an increasing percentage of fly ash replacements owing to the presence of internal curing water to improve hydration along with fly ash that moderates the heat of hydration and drying. The internal curing efficiency also improved with the increase in the percentage of fly ash replacement. Under ambient conditions, the mixes with fly ash above 45% replacement have shown very good mechanical and durability properties indicating a refined pore structure leading to enhanced transport properties.
Cement Wapno BetonCONSTRUCTION & BUILDING TECHNOLOGY-MATERIALS SCIENCE, COMPOSITES
CiteScore
1.30
自引率
28.60%
发文量
0
审稿时长
>12 weeks
期刊介绍:
The Publisher of the scientific bimonthly of international circulation, entitled "Cement-Wapno-Beton" ["Cement-Lime-Concrete"], is the Fundacja Cement, Wapno, Beton [Foundation Cement, Lime, Concrete]. The periodical is dedicated to the issues concerning mineral setting materials and concrete. It is concerned with the publication of academic and research works from the field of chemistry and technology of building setting materials and concrete