Nonlinear Surrogate Model Design for Aerodynamic Dataset Generation Based on Artificial Neural Networks

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-24 DOI:10.3390/aerospace11080607
Guillermo Suarez , Emre Özkaya , Nicolas R. Gauger , Hans-Jörg Steiner , Michael Schäfer Schäfer , David Naumann
{"title":"Nonlinear Surrogate Model Design for Aerodynamic Dataset Generation Based on Artificial Neural Networks","authors":"Guillermo Suarez , Emre Özkaya , Nicolas R. Gauger , Hans-Jörg Steiner , Michael Schäfer Schäfer , David Naumann","doi":"10.3390/aerospace11080607","DOIUrl":null,"url":null,"abstract":"In this work we construct a surrogate model using artificial neural networks (ANN) to predict the steady-state behavior of an unmanned combat aircraft. We employ various strategies to improve the model’s accuracy, including the consideration of design tolerances, creating independent surrogate models for the different flow regimes and encoding non-numeric input features. We also explore alternative machine learning models, albeit they demonstrated a lower reliability than ANNs. Two scenarios are considered for the target variable: one focusing solely on predicting the pitching moment coefficient, and the other incorporating the roll moment coefficient as well. We investigate different methods for handling multiple targets, finding that constructing a single model with multiple outputs consistently outperforms developing separate models for each target variable. Overall, the ANN provides predictions that show excellent agreement with the experimental data, demonstrating its effectiveness and reliability in aerodynamic modeling.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"23 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we construct a surrogate model using artificial neural networks (ANN) to predict the steady-state behavior of an unmanned combat aircraft. We employ various strategies to improve the model’s accuracy, including the consideration of design tolerances, creating independent surrogate models for the different flow regimes and encoding non-numeric input features. We also explore alternative machine learning models, albeit they demonstrated a lower reliability than ANNs. Two scenarios are considered for the target variable: one focusing solely on predicting the pitching moment coefficient, and the other incorporating the roll moment coefficient as well. We investigate different methods for handling multiple targets, finding that constructing a single model with multiple outputs consistently outperforms developing separate models for each target variable. Overall, the ANN provides predictions that show excellent agreement with the experimental data, demonstrating its effectiveness and reliability in aerodynamic modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的空气动力学数据集生成非线性替代模型设计
在这项工作中,我们利用人工神经网络(ANN)构建了一个代用模型,用于预测无人作战飞机的稳态行为。我们采用了各种策略来提高模型的准确性,包括考虑设计公差、为不同的流动状态创建独立的代用模型以及对非数字输入特征进行编码。我们还探索了其他机器学习模型,尽管这些模型的可靠性低于 ANN。对于目标变量,我们考虑了两种方案:一种方案只侧重于预测俯仰力矩系数,另一种方案则同时包含滚动力矩系数。我们研究了处理多个目标的不同方法,发现构建具有多个输出的单一模型始终优于为每个目标变量开发单独的模型。总之,ANN 提供的预测结果与实验数据非常吻合,证明了其在空气动力学建模中的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A DNA Aptamer as a Chemical Tool to Modulate MEX3C-Mediated mRNA Destabilization. Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1