Simulation-Based Machine Learning for Predicting Academic Performance Using Big Data

IF 0.7 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Gaming and Computer-Mediated Simulations Pub Date : 2024-07-23 DOI:10.4018/ijgcms.348052
Cheng Zhang, Jinming Yang, Mingxuan Li, Meng Deng
{"title":"Simulation-Based Machine Learning for Predicting Academic Performance Using Big Data","authors":"Cheng Zhang, Jinming Yang, Mingxuan Li, Meng Deng","doi":"10.4018/ijgcms.348052","DOIUrl":null,"url":null,"abstract":"In this study, simulation and big data analytics are combined with machine learning techniques, specifically K-means clustering, Apriori algorithm, and a stacked integrated learning model, to predict academic performance of college students with a high accuracy of 95.5%. By analyzing behavioral data from over 1,000 undergraduates, we correlate various behaviors with academic success, focusing on the use of libraries, self-study habits, and internet usage. Our findings highlight the benefits of using big data and simulation in educational strategies, promoting effective resource allocation and teaching enhancements. The study acknowledges limitations due to its regional focus and proposes future research directions to enhance model generalization and technological integration for broader application.","PeriodicalId":44126,"journal":{"name":"International Journal of Gaming and Computer-Mediated Simulations","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Gaming and Computer-Mediated Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijgcms.348052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, simulation and big data analytics are combined with machine learning techniques, specifically K-means clustering, Apriori algorithm, and a stacked integrated learning model, to predict academic performance of college students with a high accuracy of 95.5%. By analyzing behavioral data from over 1,000 undergraduates, we correlate various behaviors with academic success, focusing on the use of libraries, self-study habits, and internet usage. Our findings highlight the benefits of using big data and simulation in educational strategies, promoting effective resource allocation and teaching enhancements. The study acknowledges limitations due to its regional focus and proposes future research directions to enhance model generalization and technological integration for broader application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟的机器学习,利用大数据预测学习成绩
在本研究中,模拟和大数据分析与机器学习技术(特别是 K-means 聚类、Apriori 算法和堆叠集成学习模型)相结合,以 95.5% 的高准确率预测大学生的学业成绩。通过分析1000多名本科生的行为数据,我们将各种行为与学业成功联系起来,重点关注图书馆的使用、自学习惯和互联网的使用。我们的研究结果凸显了在教育策略中使用大数据和模拟的好处,促进了有效的资源分配和教学改进。本研究承认其区域重点所带来的局限性,并提出了未来的研究方向,以加强模型的通用性和技术整合,从而实现更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Gaming and Computer-Mediated Simulations
International Journal of Gaming and Computer-Mediated Simulations COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.80
自引率
0.00%
发文量
11
期刊最新文献
Simulation-Based Machine Learning for Predicting Academic Performance Using Big Data An Improved Face Mask Detection Simulation Algorithm Based on YOLOv5 Model Load Frequency Control Strategy for Islanded Microgrid Based on SCQ(λ) Algorithm Developing a Framework for Interactions in CBT-Based Serious Games on Smartphones Developing a Framework for Interactions in CBT-Based Serious Games on Smartphones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1