{"title":"Frequency control using fuzzy active disturbance rejection control and machine learning in a two-area microgrid under cyberattacks","authors":"Soheil Rahnamayian Jelodar, Jalal Heidary, Reza Rahmani, Behrooz Vahidi, Hossein Askarian-Abyaneh","doi":"10.1049/gtd2.13210","DOIUrl":null,"url":null,"abstract":"<p>There is a change in the traditional power system structure as a result of the increased incorporation of microgrids (MGs) into the grid. Multi-area MGs will emerge as a result, and issues related to them will need to be addressed. Load frequency control (LFC) is a challenge in such structures, which are more complicated due to variations in demand and the stochastic characteristics of renewable energy sources. This paper presents a cascade fuzzy active disturbance rejection control technique to deal with the LFC problem. In order to tune different parameters of controllers, a newly developed heuristic algorithm called the Gazelle optimization algorithm (GOA) is also employed. Moreover, due to the fact that multi-area MGs are regarded as cyber-physical systems (CPSs), a relatively new concern for LFC problems is their resilience to cyberattacks such as false data injection (FDI) and denial of service (DoS) attacks. Therefore, this research also presents a novel machine learning approach called parallel attack resilience detection system (PARDS) to deal with the LFC problem in the presence of cyberattacks. The efficiency of the proposed strategy is investigated under different scenarios, such as non-linearities in the power system or server cyberattacks.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13210","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
There is a change in the traditional power system structure as a result of the increased incorporation of microgrids (MGs) into the grid. Multi-area MGs will emerge as a result, and issues related to them will need to be addressed. Load frequency control (LFC) is a challenge in such structures, which are more complicated due to variations in demand and the stochastic characteristics of renewable energy sources. This paper presents a cascade fuzzy active disturbance rejection control technique to deal with the LFC problem. In order to tune different parameters of controllers, a newly developed heuristic algorithm called the Gazelle optimization algorithm (GOA) is also employed. Moreover, due to the fact that multi-area MGs are regarded as cyber-physical systems (CPSs), a relatively new concern for LFC problems is their resilience to cyberattacks such as false data injection (FDI) and denial of service (DoS) attacks. Therefore, this research also presents a novel machine learning approach called parallel attack resilience detection system (PARDS) to deal with the LFC problem in the presence of cyberattacks. The efficiency of the proposed strategy is investigated under different scenarios, such as non-linearities in the power system or server cyberattacks.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf