County-level total factor productivity of food in China and its spatio-temporal evolution and drivers

Yang Liu, Hui Jiang, Junfu Cui
{"title":"County-level total factor productivity of food in China and its spatio-temporal evolution and drivers","authors":"Yang Liu, Hui Jiang, Junfu Cui","doi":"10.3389/fsufs.2024.1325915","DOIUrl":null,"url":null,"abstract":"In the context of the ongoing process of high-quality development in the new era, which is focused on improving total factor productivity, it is of great importance to explore the spatial and temporal variations of total factor productivity growth and its driving factors in China’s county regions’ grain cultivation industry. This paper employs a three-stage DEA-Malmquist productivity method, the Gini coefficient method, and a panel fixed-effects model to analyze data from Chinese counties between 2009 and 2019. The analysis indicates that the growth of county food total factor productivity (FTFP) exhibits a fluctuating upward trend during the examination period, with an average annual growth rate of 2.43%. This is primarily driven by technological progress, yet the core driving role of technological efficiency is not effectively played. The average annual growth rate of county FTFP varies across different regions. The highest average annual growth rate of county FTFP in the eastern region and the primary grain-producing area is 2.75 and 3.04%, respectively. The lowest growth rates were observed in the western region and the main grain marketing area, at 1.44 and 1.23%, respectively. Secondly, the Gini coefficient of county FTFP continues to demonstrate a persistent upward trend during the examination period, with an average annual growth rate of 14.729%. The primary factor contributing to the observed variation in total factor productivity growth of the food sector at the regional level is the existence of disparate technological progress. Thirdly, there is a notable positive correlation between county financial deepening and financial self-sufficiency rates and county FTFP growth, with impact coefficients of 0.0503 and 0.0924, respectively. Conversely, county population density, degree of economic development, farmers’ income level, and industrial structure exert a significant negative influence on county FTFP growth and technological progress.","PeriodicalId":504481,"journal":{"name":"Frontiers in Sustainable Food Systems","volume":"10 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sustainable Food Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsufs.2024.1325915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of the ongoing process of high-quality development in the new era, which is focused on improving total factor productivity, it is of great importance to explore the spatial and temporal variations of total factor productivity growth and its driving factors in China’s county regions’ grain cultivation industry. This paper employs a three-stage DEA-Malmquist productivity method, the Gini coefficient method, and a panel fixed-effects model to analyze data from Chinese counties between 2009 and 2019. The analysis indicates that the growth of county food total factor productivity (FTFP) exhibits a fluctuating upward trend during the examination period, with an average annual growth rate of 2.43%. This is primarily driven by technological progress, yet the core driving role of technological efficiency is not effectively played. The average annual growth rate of county FTFP varies across different regions. The highest average annual growth rate of county FTFP in the eastern region and the primary grain-producing area is 2.75 and 3.04%, respectively. The lowest growth rates were observed in the western region and the main grain marketing area, at 1.44 and 1.23%, respectively. Secondly, the Gini coefficient of county FTFP continues to demonstrate a persistent upward trend during the examination period, with an average annual growth rate of 14.729%. The primary factor contributing to the observed variation in total factor productivity growth of the food sector at the regional level is the existence of disparate technological progress. Thirdly, there is a notable positive correlation between county financial deepening and financial self-sufficiency rates and county FTFP growth, with impact coefficients of 0.0503 and 0.0924, respectively. Conversely, county population density, degree of economic development, farmers’ income level, and industrial structure exert a significant negative influence on county FTFP growth and technological progress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国县级粮食全要素生产率及其时空演变和驱动因素
在新时代以提高全要素生产率为核心的高质量发展进程不断推进的背景下,探讨中国县域粮食种植业全要素生产率增长的时空变化及其驱动因素具有重要意义。本文采用三阶段 DEA-Malmquist 生产率法、基尼系数法和面板固定效应模型,对 2009 年至 2019 年中国县域数据进行分析。分析表明,在考察期内,县域粮食全要素生产率(FTFP)增长呈现波动上升趋势,年均增长率为2.43%。这主要得益于技术进步的推动,但技术效率的核心驱动作用并未得到有效发挥。不同地区的县域全要素生产率年均增长率不尽相同。东部地区和粮食主产区的县域全要素生产率年均增长率最高,分别为 2.75%和 3.04%。西部地区和粮食主销区的增长率最低,分别为 1.44% 和 1.23%。其次,在考察期内,县域全要素生产率基尼系数继续呈持续上升趋势,年均增长率为 14.729%。造成区域一级粮食部门全要素生产率增长差异的主要因素是技术进步存在差异。第三,县域金融深化率和金融自给率与县域全要素生产率增长之间存在显著的正相关关系,影响系数分别为 0.0503 和 0.0924。相反,县域人口密度、经济发展程度、农民收入水平和产业结构对县域全要素生产率增长和技术进步有显著的负向影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fish kills and insecticides: historical water quality patterns in 10 agricultural watersheds in Prince Edward Island, Canada (2002–2022) Bedding material properties and slurry C/N ratio affect the availability of nitrogen in cattle slurry applied to soil Editorial: Agrochemicals in agricultural and non-agricultural settings: fate, distribution, and potential human and environmental health hazards Analysis of the driving path of e-commerce to high-quality agricultural development in China: empirical evidence from mediating effect models Unravelling the synergistic effects of arbuscular mycorrhizal fungi and vermicompost on improving plant growth,nutrient absorption, and secondary metabolite production in ginger (Zingiber officinale Rosc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1