Luca Mellere, Martina Bellasio, Francesca Berini, Flavia Marinelli, Jean Armengaud, F. Beltrametti
{"title":"Coriolopsis trogii MUT3379: A Novel Cell Factory for High-Yield Laccase Production","authors":"Luca Mellere, Martina Bellasio, Francesca Berini, Flavia Marinelli, Jean Armengaud, F. Beltrametti","doi":"10.3390/fermentation10070376","DOIUrl":null,"url":null,"abstract":"Coriolopsis trogii is a basidiomycete fungus which utilizes a large array of lignin-modifying enzymes to colonize and decompose dead wood. Its extracellular enzymatic arsenal includes laccases, i.e., polyphenol oxidases of relevant interest for different industrial applications thanks to their ability to oxidize a diverse range of natural and synthetic compounds. In this work, the production of laccases in C. trogii MUT3379 was explored and improved. From an initial production of ca. 10,000 U L−1, the fermentation process was gradually optimized, reaching a final yield of ca. 200,000 U L−1. An SDS-PAGE analysis of the secretome highlighted the presence of a main protein of ca. 60 kDa showing laccase activity, which was designated as Lac3379-1 once its primary sequence was established by tandem mass spectrometry. The characterization of Lac3379-1 revealed a remarkable enzymatic stability in the presence of surfactants and solvents and a diversified activity on a broad range of substrates, positioning it as an interesting tool for diverse biotechnological applications. The high-yield and robust production process indicates C. trogii MUT3379 as a promising cell factory for laccases, offering new perspectives for industrial applications of lignin-modifying enzymes.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"30 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10070376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Coriolopsis trogii is a basidiomycete fungus which utilizes a large array of lignin-modifying enzymes to colonize and decompose dead wood. Its extracellular enzymatic arsenal includes laccases, i.e., polyphenol oxidases of relevant interest for different industrial applications thanks to their ability to oxidize a diverse range of natural and synthetic compounds. In this work, the production of laccases in C. trogii MUT3379 was explored and improved. From an initial production of ca. 10,000 U L−1, the fermentation process was gradually optimized, reaching a final yield of ca. 200,000 U L−1. An SDS-PAGE analysis of the secretome highlighted the presence of a main protein of ca. 60 kDa showing laccase activity, which was designated as Lac3379-1 once its primary sequence was established by tandem mass spectrometry. The characterization of Lac3379-1 revealed a remarkable enzymatic stability in the presence of surfactants and solvents and a diversified activity on a broad range of substrates, positioning it as an interesting tool for diverse biotechnological applications. The high-yield and robust production process indicates C. trogii MUT3379 as a promising cell factory for laccases, offering new perspectives for industrial applications of lignin-modifying enzymes.