Ömer Ümit Yalçın, U. Özkan, Deniz Aydemir, A. Öztel, Yafes Yildiz
{"title":"Material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers","authors":"Ömer Ümit Yalçın, U. Özkan, Deniz Aydemir, A. Öztel, Yafes Yildiz","doi":"10.15376/biores.19.3.6290-6303","DOIUrl":null,"url":null,"abstract":"This study investigated the material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers including nanofibrillated cellulose (NFC) and titanium dioxide (TiO2). The density, water absorption, thickness swelling, and mechanical tests (which included flexure and internal bonding strength tests) were considered. The fuzzy sets theory addressed the ambiguity and subjectivity of language using triangular fuzzy numbers to assess the interests of decision maker’s (DMs). The addition of nanofillers slightly decreased water absorption values due to possible good interactions between nanofillers and urea formaldehyde. Thickness swelling ranged from 0.4 to 17.5%, and water absorption ranged from 0.4 to 10.7% compared to the control sample. The physical properties of the samples were generally improved by urea formaldehyde with NFC/TiO2, and the densities of the test panels were found to be similar. The modulus of rupture of the panels with urea formaldehyde with nanofillers were under the EN 312 standard’s requirements, and the highest flexural strength and flexural modulus of elasticity were 11.1 and 1.3 GPa, respectively. Internal bond values were between 0.55 and 0.89 MPa. According to EDAS method rankings, 2C2T-8 was the best material, followed by 2C1T-8 and 2C-8. The samples coded with Control-4 and Control-8 were the lowest-performing materials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"74 8","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.3.6290-6303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers including nanofibrillated cellulose (NFC) and titanium dioxide (TiO2). The density, water absorption, thickness swelling, and mechanical tests (which included flexure and internal bonding strength tests) were considered. The fuzzy sets theory addressed the ambiguity and subjectivity of language using triangular fuzzy numbers to assess the interests of decision maker’s (DMs). The addition of nanofillers slightly decreased water absorption values due to possible good interactions between nanofillers and urea formaldehyde. Thickness swelling ranged from 0.4 to 17.5%, and water absorption ranged from 0.4 to 10.7% compared to the control sample. The physical properties of the samples were generally improved by urea formaldehyde with NFC/TiO2, and the densities of the test panels were found to be similar. The modulus of rupture of the panels with urea formaldehyde with nanofillers were under the EN 312 standard’s requirements, and the highest flexural strength and flexural modulus of elasticity were 11.1 and 1.3 GPa, respectively. Internal bond values were between 0.55 and 0.89 MPa. According to EDAS method rankings, 2C2T-8 was the best material, followed by 2C1T-8 and 2C-8. The samples coded with Control-4 and Control-8 were the lowest-performing materials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.