A high explosive blast simulator

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-19 DOI:10.1177/20414196241264886
Jonas Rudshaug, Tormod Grue, B. S. Elveli
{"title":"A high explosive blast simulator","authors":"Jonas Rudshaug, Tormod Grue, B. S. Elveli","doi":"10.1177/20414196241264886","DOIUrl":null,"url":null,"abstract":"Window facades are heavily used in modern design. To ensure that the facade can withstand sufficiently large blast loads, experimental evaluation of the entire facade is crucial. In this study, we present the High Explosive Blast Simulator (HEBSim), an outdoors modular explosive-driven blast simulator with a large cross-section designed for real-size blast testing of glass facades. To evaluate the performance of HEBSim, we performed two test series, one with a rigid steel plate component and one with deformable laminated glass window components. Pressure sensors were used to measure the overpressure histories for both test series and deformation data was gathered using three-dimensional digital image correlation (3D-DIC) for the window component tests. The test series demonstrated that HEBSim generates planar and repeatable blast load profiles in line with explosive pressure resistance (EPR) classifications for various charge masses. In addition, the window component test series illustrated the stochastic fracture behavior of glass. Based on the presented data, HEBSim is found suitable for blast testing of large glass facades.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"122 42","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196241264886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Window facades are heavily used in modern design. To ensure that the facade can withstand sufficiently large blast loads, experimental evaluation of the entire facade is crucial. In this study, we present the High Explosive Blast Simulator (HEBSim), an outdoors modular explosive-driven blast simulator with a large cross-section designed for real-size blast testing of glass facades. To evaluate the performance of HEBSim, we performed two test series, one with a rigid steel plate component and one with deformable laminated glass window components. Pressure sensors were used to measure the overpressure histories for both test series and deformation data was gathered using three-dimensional digital image correlation (3D-DIC) for the window component tests. The test series demonstrated that HEBSim generates planar and repeatable blast load profiles in line with explosive pressure resistance (EPR) classifications for various charge masses. In addition, the window component test series illustrated the stochastic fracture behavior of glass. Based on the presented data, HEBSim is found suitable for blast testing of large glass facades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能炸药爆炸模拟器
现代设计中大量使用窗户外墙。为确保外墙能承受足够大的爆炸荷载,对整个外墙进行实验评估至关重要。在本研究中,我们介绍了高爆破模拟器(HEBSim),这是一种室外模块化爆炸驱动爆破模拟器,具有大截面,专为玻璃外墙的真实尺寸爆破测试而设计。为了评估 HEBSim 的性能,我们进行了两个系列的测试,一个是刚性钢板组件,另一个是可变形夹层玻璃窗组件。压力传感器用于测量两个测试系列的过压历史,变形数据则通过三维数字图像相关技术(3D-DIC)收集。系列测试表明,HEBSim 可生成平面和可重复的爆炸载荷曲线,符合各种装药质量的抗爆压力 (EPR) 分类。此外,窗户组件测试系列还说明了玻璃的随机断裂行为。根据所提供的数据,HEBSim 适用于大型玻璃外墙的爆炸测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A DNA Aptamer as a Chemical Tool to Modulate MEX3C-Mediated mRNA Destabilization. Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1