Javier Villar-Hernández, E. Villar-Cociña, H. Savastano, Moisés Frías Rojas
{"title":"Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement","authors":"Javier Villar-Hernández, E. Villar-Cociña, H. Savastano, Moisés Frías Rojas","doi":"10.3390/resources13070100","DOIUrl":null,"url":null,"abstract":"This paper presents the characterization of a binary mixture of construction and demolition waste (CDW) and bamboo leaf ash (BLAsh) calcined at 600 °C (novel mixture) and the study of its pozzolanic behavior. Different dosages in a pozzolan/Ca(OH)2 system were employed. The aim is the valorization of fine-fraction CDW that achieves a more reactive binary mixture and allows an adequate use of CDW as waste, as CDW is a material of limited use due to its low pozzolanic activity. The pozzolanic behavior of the mixture was analyzed using the conductometric method, which measures the electrical conductivity in the CDW + BLAsh/CH solution versus reaction time. With the application of a kinetic–diffusive mathematical model, the kinetic parameters of the pozzolanic reaction were quantified. This allowed a quantitative evaluation of the pozzolanic activity based on the values of these parameters. To validate these results, other experimental techniques were used: X-ray diffraction, thermogravimetry and scanning electron microscopy. Also, mechanical compressive strength assays were carried out. The results show an increase in the pozzolanic activity of binary mixes of CDW + BLAsh for all the dosages used in comparison to the pozzolanic activity of CDW alone. The quantitative assessment (kinetic parameters) shows that the binary mixture CDW50 + BLAsh50 is the most reactive (reaction rate constant of 7.88 × 10−1 h−1) and is superior to the mixtures CDW60 + BLAsh40 and CDW70 + BLAs30. Compressive strength tests show higher strength values for the ternary mixes (OPC + CDW + BLAsh) compared to the binary mixes (OPC + CDW). In view of the results, the binary blend of pozzolans CDW + BLAsh is suitable for the manufacture of future low-carbon ternary cements.","PeriodicalId":509483,"journal":{"name":"Resources","volume":"118 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/resources13070100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the characterization of a binary mixture of construction and demolition waste (CDW) and bamboo leaf ash (BLAsh) calcined at 600 °C (novel mixture) and the study of its pozzolanic behavior. Different dosages in a pozzolan/Ca(OH)2 system were employed. The aim is the valorization of fine-fraction CDW that achieves a more reactive binary mixture and allows an adequate use of CDW as waste, as CDW is a material of limited use due to its low pozzolanic activity. The pozzolanic behavior of the mixture was analyzed using the conductometric method, which measures the electrical conductivity in the CDW + BLAsh/CH solution versus reaction time. With the application of a kinetic–diffusive mathematical model, the kinetic parameters of the pozzolanic reaction were quantified. This allowed a quantitative evaluation of the pozzolanic activity based on the values of these parameters. To validate these results, other experimental techniques were used: X-ray diffraction, thermogravimetry and scanning electron microscopy. Also, mechanical compressive strength assays were carried out. The results show an increase in the pozzolanic activity of binary mixes of CDW + BLAsh for all the dosages used in comparison to the pozzolanic activity of CDW alone. The quantitative assessment (kinetic parameters) shows that the binary mixture CDW50 + BLAsh50 is the most reactive (reaction rate constant of 7.88 × 10−1 h−1) and is superior to the mixtures CDW60 + BLAsh40 and CDW70 + BLAs30. Compressive strength tests show higher strength values for the ternary mixes (OPC + CDW + BLAsh) compared to the binary mixes (OPC + CDW). In view of the results, the binary blend of pozzolans CDW + BLAsh is suitable for the manufacture of future low-carbon ternary cements.