Target-Aware Image Denoising for Inverse Monte Carlo Rendering

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-07-19 DOI:10.1145/3658182
Jeongmin Gu, Jonghee Back, Sung-Eui Yoon, Bochang Moon
{"title":"Target-Aware Image Denoising for Inverse Monte Carlo Rendering","authors":"Jeongmin Gu, Jonghee Back, Sung-Eui Yoon, Bochang Moon","doi":"10.1145/3658182","DOIUrl":null,"url":null,"abstract":"Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"115 14","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658182","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于反蒙特卡罗渲染的目标感知图像去噪
基于物理的可微分渲染技术可以根据渲染输入(即场景参数)对精确的光传输模拟进行微分,并通过迭代优化从目标图像(如照片或合成图像)中推断场景参数。然而,这种反蒙特卡罗渲染继承了蒙特卡罗积分的基本问题,即噪声,导致优化收敛速度缓慢。解决噪声问题的一个有效方法是利用图像去噪器来提高优化收敛速度。遗憾的是,直接采用为普通渲染场景设计的现有图像去噪器,会因去噪偏差而使优化进入不理想的局部最小值。这促使我们重新制定一种新的图像去噪器,专门用于反渲染。与现有的图像去噪器不同,我们通过考虑目标图像(即反渲染中的特定信息)来进行去噪。对于我们的目标感知去噪,我们通过使用目标的线性回归技术来确定我们的去噪权重。我们通过一系列不同的测试证明,我们的去噪器能使反渲染优化稳健地推断出场景参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Ion-Track Polycarbonate Membrane for Sustainable All-Day Passive Bilateral Thermal Management Mechanically Interlocked Polyimide@Cyclodextrin All-Organic Dielectric with Enhanced High-Temperature Capacitive Energy Storage Performance High-Temperature Photoinitiated RAFT Dispersion Polymerization: A Light-Mediated Approach for Controlled Synthesis of Well-Defined Polymeric Microspheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1