{"title":"Topology Analysis and Structural Optimization of Air Suspension Mechanical-Vibration-Reduction Wheels","authors":"Xiao Meng, Xianying Feng, Peihua Liu, Xinhua Sun","doi":"10.3390/machines12070488","DOIUrl":null,"url":null,"abstract":"This paper designs a kind of air suspension mechanical-vibration-reduction wheel for mining engineering vehicles; the research work on topology analysis and the structural optimization of the inner and outer rims are carried out with this wheel as the research object. Using Workbench finite-element analysis software, taking the results of static analysis and modal analysis of the two as constraints, a variety of structural improvement styles are obtained through a topology analysis method and compared and verified, and a more reasonable improvement result is selected and assembled into a whole wheel for final analysis and verification. The results show that the optimization results of the wheel still meet the design’s load-bearing requirements, and the weight is lighter; the topology analysis results are ideal.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12070488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper designs a kind of air suspension mechanical-vibration-reduction wheel for mining engineering vehicles; the research work on topology analysis and the structural optimization of the inner and outer rims are carried out with this wheel as the research object. Using Workbench finite-element analysis software, taking the results of static analysis and modal analysis of the two as constraints, a variety of structural improvement styles are obtained through a topology analysis method and compared and verified, and a more reasonable improvement result is selected and assembled into a whole wheel for final analysis and verification. The results show that the optimization results of the wheel still meet the design’s load-bearing requirements, and the weight is lighter; the topology analysis results are ideal.