J. Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, Kui Wu
{"title":"Real-time Physically Guided Hair Interpolation","authors":"J. Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, Kui Wu","doi":"10.1145/3658176","DOIUrl":null,"url":null,"abstract":"Strand-based hair simulations have recently become increasingly popular for a range of real-time applications. However, accurately simulating the full number of hair strands remains challenging. A commonly employed technique involves simulating a subset of guide hairs to capture the overall behavior of the hairstyle. Details are then enriched by interpolation using linear skinning. Hair interpolation enables fast real-time simulations but frequently leads to various artifacts during runtime. As the skinning weights are often pre-computed, substantial variations between the initial and deformed shapes of the hair can cause severe deviations in fine hair geometry. Straight hairs may become kinked, and curly hairs may become zigzags.\n This work introduces a novel physical-driven hair interpolation scheme that utilizes existing simulated guide hair data. Instead of directly operating on positions, we interpolate the internal forces from the guide hairs before efficiently reconstructing the rendered hairs based on their material model. We formulate our problem as a constraint satisfaction problem for which we present an efficient solution. Further practical considerations are addressed using regularization terms that regulate penetration avoidance and drift correction. We have tested various hairstyles to illustrate that our approach can generate visually plausible rendered hairs with only a few guide hairs and minimal computational overhead, amounting to only about 20% of conventional linear hair interpolation. This efficiency underscores the practical viability of our method for real-time applications.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":" 510","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658176","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strand-based hair simulations have recently become increasingly popular for a range of real-time applications. However, accurately simulating the full number of hair strands remains challenging. A commonly employed technique involves simulating a subset of guide hairs to capture the overall behavior of the hairstyle. Details are then enriched by interpolation using linear skinning. Hair interpolation enables fast real-time simulations but frequently leads to various artifacts during runtime. As the skinning weights are often pre-computed, substantial variations between the initial and deformed shapes of the hair can cause severe deviations in fine hair geometry. Straight hairs may become kinked, and curly hairs may become zigzags.
This work introduces a novel physical-driven hair interpolation scheme that utilizes existing simulated guide hair data. Instead of directly operating on positions, we interpolate the internal forces from the guide hairs before efficiently reconstructing the rendered hairs based on their material model. We formulate our problem as a constraint satisfaction problem for which we present an efficient solution. Further practical considerations are addressed using regularization terms that regulate penetration avoidance and drift correction. We have tested various hairstyles to illustrate that our approach can generate visually plausible rendered hairs with only a few guide hairs and minimal computational overhead, amounting to only about 20% of conventional linear hair interpolation. This efficiency underscores the practical viability of our method for real-time applications.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.