Characterization of Below-Bandgap Absorption in Type II GaSb Quantum Dots in GaAs Solar Cells

IF 1.5 Q2 PHYSICS, MULTIDISCIPLINARY Physics Pub Date : 2024-07-19 DOI:10.3390/physics6030060
J. James, Hiromi Fujita, P. Carrington, Andrew R. J. Marshall, Susan Krier, A. Krier
{"title":"Characterization of Below-Bandgap Absorption in Type II GaSb Quantum Dots in GaAs Solar Cells","authors":"J. James, Hiromi Fujita, P. Carrington, Andrew R. J. Marshall, Susan Krier, A. Krier","doi":"10.3390/physics6030060","DOIUrl":null,"url":null,"abstract":"An approach to derive the below-bandgap absorption in GaSb/GaAs self-assembled quantum dot devices using room-temperature external quantum efficiency measurement results is presented. Devices with five layers of delta-doped quantum dots placed in the intrinsic, n- and p-regions of a GaAs solar cell are studied. The importance of incorporating an extended Urbach tail absorption in analyzing the absorption strength of quantum dots and the transition states is demonstrated. The theoretically integrated absorbance via quantum dot ground states is calculated as 1.04 × 1015 cm−1s−1, which is in reasonable agreement with the experimentally derived value 8.1 × 1015 cm−1s−1. The wetting layer and quantum dot absorption contributions are separated from the tail absorption and their transition energies are calculated. Using these transition energies and the GaAs energy gap of 1.42 eV, the heavy hole confinement energies for the quantum dots (320 meV) and for the wetting layer (120 meV) are estimated.","PeriodicalId":20136,"journal":{"name":"Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/physics6030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An approach to derive the below-bandgap absorption in GaSb/GaAs self-assembled quantum dot devices using room-temperature external quantum efficiency measurement results is presented. Devices with five layers of delta-doped quantum dots placed in the intrinsic, n- and p-regions of a GaAs solar cell are studied. The importance of incorporating an extended Urbach tail absorption in analyzing the absorption strength of quantum dots and the transition states is demonstrated. The theoretically integrated absorbance via quantum dot ground states is calculated as 1.04 × 1015 cm−1s−1, which is in reasonable agreement with the experimentally derived value 8.1 × 1015 cm−1s−1. The wetting layer and quantum dot absorption contributions are separated from the tail absorption and their transition energies are calculated. Using these transition energies and the GaAs energy gap of 1.42 eV, the heavy hole confinement energies for the quantum dots (320 meV) and for the wetting layer (120 meV) are estimated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
砷化镓太阳能电池中 II 型 GaSb 量子点的带隙下吸收特性分析
本文介绍了一种利用室温外部量子效率测量结果推导 GaSb/GaAs 自组装量子点器件中低于带隙吸收的方法。研究了在砷化镓太阳能电池的本征区、n 区和 p 区放置五层三角掺杂量子点的器件。在分析量子点的吸收强度和过渡态时,结合扩展的乌尔巴赫尾吸收的重要性得到了证明。计算得出量子点基态的理论综合吸收率为 1.04 × 1015 cm-1s-1,这与实验得出的数值 8.1 × 1015 cm-1s-1 非常吻合。从尾部吸收中分离出了润湿层和量子点的吸收贡献,并计算出了它们的过渡能量。利用这些转换能量和 1.42 eV 的砷化镓能隙,估算出量子点(320 meV)和润湿层(120 meV)的重空穴禁锢能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics
Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
6.20%
发文量
0
审稿时长
10 weeks
期刊最新文献
Toy Robots Mimic Swimming Algae How to Clean Up a Skyrmion Lattice Time Delays Improve Performance of Certain Neural Networks Twisted Graphene Could Host an Acoustic Plasmon Viewing Fast Vortex Motion in a Superconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1