Phenotypic Characterization of Fermentation Performance and Stress Tolerance in Commercial Ale Yeast Strains

Anqi Chen, Qiqi Si, Qingyun Xu, Chenwei Pan, Yuhan Cheng, Jian Chen
{"title":"Phenotypic Characterization of Fermentation Performance and Stress Tolerance in Commercial Ale Yeast Strains","authors":"Anqi Chen, Qiqi Si, Qingyun Xu, Chenwei Pan, Yuhan Cheng, Jian Chen","doi":"10.3390/fermentation10070364","DOIUrl":null,"url":null,"abstract":"Yeast plays a crucial role in the fermentation industry, particularly in alcoholic beverage production, where robustness and metabolic flexibility are essential. This study aimed to investigate the stress tolerance and metabolic capabilities of seven commercial ale yeast strains under various stress conditions, including temperature, pH, osmotic pressure, glucose starvation, and ethanol concentration. Detailed growth assays and stress tolerance tests were utilized to evaluate fermentation efficiency, carbon source utilization, and stress adaptation. Significant variability was observed among the strains. ACY169 and ACY150 demonstrated high overall stress tolerance, making them suitable for high-gravity brewing and processes involving extreme temperature fluctuations. ACY10 showed robust performance under acid stress, making it ideal for sour beer production. In contrast, ACY5 exhibited limited adaptability under stress, with longer doubling times and reduced metabolic activity. The study also revealed differences in carbon source utilization, with ACY169 displaying exceptional metabolic versatility by efficiently fermenting various sugars, including glucose, fructose, maltose, and raffinose. ACY10 and ACY150 exhibited balanced fermentation profiles with high ethanol production rates, while ACY9 demonstrated the highest glucose consumption rate but lower ethanol yields and significant acidification.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":" 104","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10070364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Yeast plays a crucial role in the fermentation industry, particularly in alcoholic beverage production, where robustness and metabolic flexibility are essential. This study aimed to investigate the stress tolerance and metabolic capabilities of seven commercial ale yeast strains under various stress conditions, including temperature, pH, osmotic pressure, glucose starvation, and ethanol concentration. Detailed growth assays and stress tolerance tests were utilized to evaluate fermentation efficiency, carbon source utilization, and stress adaptation. Significant variability was observed among the strains. ACY169 and ACY150 demonstrated high overall stress tolerance, making them suitable for high-gravity brewing and processes involving extreme temperature fluctuations. ACY10 showed robust performance under acid stress, making it ideal for sour beer production. In contrast, ACY5 exhibited limited adaptability under stress, with longer doubling times and reduced metabolic activity. The study also revealed differences in carbon source utilization, with ACY169 displaying exceptional metabolic versatility by efficiently fermenting various sugars, including glucose, fructose, maltose, and raffinose. ACY10 and ACY150 exhibited balanced fermentation profiles with high ethanol production rates, while ACY9 demonstrated the highest glucose consumption rate but lower ethanol yields and significant acidification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业啤酒酵母菌株发酵性能和应激耐受性的表型表征
酵母在发酵工业中起着至关重要的作用,尤其是在酒精饮料生产中,酵母的稳健性和新陈代谢的灵活性至关重要。本研究旨在调查七种商业麦酒酵母菌株在温度、pH 值、渗透压、葡萄糖饥饿和乙醇浓度等各种应激条件下的应激耐受性和代谢能力。利用详细的生长测定和胁迫耐受性测试来评估发酵效率、碳源利用率和胁迫适应性。观察到菌株之间存在显著差异。ACY169 和 ACY150 表现出较高的整体应激耐受性,因此适合高比重酿造和涉及极端温度波动的工艺。ACY10 在酸胁迫下表现强劲,是酸啤酒生产的理想选择。相比之下,ACY5 在胁迫下的适应能力有限,倍增时间较长,代谢活性降低。该研究还揭示了碳源利用方面的差异,ACY169 通过高效发酵各种糖类(包括葡萄糖、果糖、麦芽糖和棉子糖等)显示出卓越的代谢多功能性。ACY10 和 ACY150 表现出均衡的发酵特征,乙醇产量高,而 ACY9 则表现出最高的葡萄糖消耗率,但乙醇产量较低且酸化明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primary Metabolites and Microbial Diversity in Commercial Kombucha Products Black Tea Kombucha Consumption: Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity Chia Seed Mucilage as a Functional Ingredient to Improve Quality of Goat Milk Yoghurt: Effects on Rheology, Texture, Microstructure and Sensory Properties Biohydrogen Production from Methane-Derived Biomass of Methanotroph and Microalgae by Clostridium Characterization of the Gamma-Aminobutyric Acid (GABA) Biosynthetic Gene Cluster in High GABA-Producing Enterococcus avium G-15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1