Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2024-07-17 DOI:10.3390/photonics11070663
Sergey V. Alyshev, A. Khegai, Andrey Umnikov, S. Firstov
{"title":"Bismuth-Doped Fiber Lasers and Amplifiers Operating from O- to U-Band: Current State of the Art and Outlook","authors":"Sergey V. Alyshev, A. Khegai, Andrey Umnikov, S. Firstov","doi":"10.3390/photonics11070663","DOIUrl":null,"url":null,"abstract":"The development of unique optical materials that provide amplification and lasing in new wavelength ranges is a major scientific problem, the solution of which is becoming the basis for the emergence of new optical technologies, which are primarily targeting the expanding of operating wavelengths in silica glass. In fact, one of the notable advances in the field of fiber optics over the past two decades has been the production of a new type of laser-active fibers (namely bismuth-doped fibers), which has made it possible to cover previously inaccessible (for rare-earth-doped fibers) spectral ranges, in particular O-, E-, S-, and U-telecom bands. The advance in this direction has led to further growth of the technological capabilities in the telecom industry for amplification and generation of optical radiation in various wavelength bands, which will result in the near future to overcoming the problem known as “capacity crunch” by means of expanding the data transmission range. Recently, bismuth-doped fibers have been actively studying in order to improve their characteristics, which would allow for efficient implementation of optical devices based on bismuth-doped fibers (BDFs) with deployed telecommunications systems. This is one of the dynamically developing areas, where progress has already manifested in form of emergence of new achievements, in particular commercially available various types of BDFs, as well as a series of novel fiber-optic amplifiers for the O- and E-bands. In this review, a number of scientific studies that have already led to a noticeable progress in the field of optical properties of BDFs and the practical implementation of optical devices (lasers and amplifiers) based on them are presented and discussed, with much attention to the achievements of recent years.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070663","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of unique optical materials that provide amplification and lasing in new wavelength ranges is a major scientific problem, the solution of which is becoming the basis for the emergence of new optical technologies, which are primarily targeting the expanding of operating wavelengths in silica glass. In fact, one of the notable advances in the field of fiber optics over the past two decades has been the production of a new type of laser-active fibers (namely bismuth-doped fibers), which has made it possible to cover previously inaccessible (for rare-earth-doped fibers) spectral ranges, in particular O-, E-, S-, and U-telecom bands. The advance in this direction has led to further growth of the technological capabilities in the telecom industry for amplification and generation of optical radiation in various wavelength bands, which will result in the near future to overcoming the problem known as “capacity crunch” by means of expanding the data transmission range. Recently, bismuth-doped fibers have been actively studying in order to improve their characteristics, which would allow for efficient implementation of optical devices based on bismuth-doped fibers (BDFs) with deployed telecommunications systems. This is one of the dynamically developing areas, where progress has already manifested in form of emergence of new achievements, in particular commercially available various types of BDFs, as well as a series of novel fiber-optic amplifiers for the O- and E-bands. In this review, a number of scientific studies that have already led to a noticeable progress in the field of optical properties of BDFs and the practical implementation of optical devices (lasers and amplifiers) based on them are presented and discussed, with much attention to the achievements of recent years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运行于 O 波段至 U 波段的掺铋光纤激光器和放大器:技术现状与展望
开发能够在新波长范围内提供放大和激光的独特光学材料是一个重大科学问题,解决这一问题正在成为新光学技术出现的基础,而新光学技术的主要目标是扩大硅玻璃的工作波长。事实上,过去二十年来光纤领域的一个显著进步就是生产出了一种新型的激光活性光纤(即掺铋光纤),从而可以覆盖以前无法达到的(掺稀土光纤)光谱范围,特别是 O、E、S 和 U 电信波段。在这一方向上取得的进步促使电信业进一步提高了在不同波段放大和产生光辐射的技术能力,这将在不久的将来通过扩大数据传输范围来克服被称为 "容量紧缩 "的问题。最近,人们一直在积极研究掺铋光纤,以改进其特性,从而使基于掺铋光纤(BDF)的光设备能够有效地应用于已部署的电信系统。这是一个蓬勃发展的领域,其进展表现为新成果的出现,特别是各种类型的掺铋光纤以及一系列用于 O 波段和 E 波段的新型光纤放大器的商业化。在这篇综述中,介绍并讨论了在 BDF 光学特性和基于 BDF 的光学设备(激光器和放大器)的实际应用方面已取得显著进展的一系列科学研究,并对近年来取得的成就给予了极大关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
High-Precision Temperature Control of Laser Crystals A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback Analyses of an Ultra-Wideband Absorber from UV-B to Middle-IR Utilizing a Square Nanopillar and a Square Hollow Embedded in a Square Cavity of the Top Layer of Multilayer Metamaterials Interferometrically Enhanced Intensity and Wavelength Modulation in Tunable Diode Laser Spectroscopy Efficient Depth Measurement for Live Control of Laser Drilling Process with Optical Coherence Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1