Assessing Selected CNN Models for Efficient Feature Extraction in SSD for Text Detection in Advertisement Images

Aanuoluwa O. Adio, Caleb O. Akanbi, A. A. Adigun, Abdulwakil A Kasali, S. Adisa
{"title":"Assessing Selected CNN Models for Efficient Feature Extraction in SSD for Text Detection in Advertisement Images","authors":"Aanuoluwa O. Adio, Caleb O. Akanbi, A. A. Adigun, Abdulwakil A Kasali, S. Adisa","doi":"10.4314/dujopas.v10i2b.17","DOIUrl":null,"url":null,"abstract":"Digital advertisement promotes goods and services using digital media and technology. These digital advertisement images contain  important information on the product and services being advertised and seek to persuade potential customers to take specific actions  toward contacting the advertiser. Manual extraction of information from the advertisement images is tedious and prone to errors. The  literature on text detection from images, billboards, and signposts using Single-shot detection (SSD) is vast. However, the literature has  not explored its performance for text detection on advertisement images. Therefore, there is a need to evaluate the performance of  these models on advertisement images. The performance of three selected Convolutional Neural Network (CNN) models (Resnet-50,  Mobilenetv2, and Resnet-101) with SSD for text detection in advertisement images was evaluated. A total of 400 digital advertisement  images were manually collected and annotated for use in this study. Results of comparing the performance of selected CNN models with  the SSD architecture for text detection from advertisement images showed that Resnet-50 performed well with the detection of small  texts with a mean Average Precision (mAP) of 0.736, AP(small) of 0.692 and AR(small) of 0.781. ","PeriodicalId":213779,"journal":{"name":"Dutse Journal of Pure and Applied Sciences","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dutse Journal of Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/dujopas.v10i2b.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital advertisement promotes goods and services using digital media and technology. These digital advertisement images contain  important information on the product and services being advertised and seek to persuade potential customers to take specific actions  toward contacting the advertiser. Manual extraction of information from the advertisement images is tedious and prone to errors. The  literature on text detection from images, billboards, and signposts using Single-shot detection (SSD) is vast. However, the literature has  not explored its performance for text detection on advertisement images. Therefore, there is a need to evaluate the performance of  these models on advertisement images. The performance of three selected Convolutional Neural Network (CNN) models (Resnet-50,  Mobilenetv2, and Resnet-101) with SSD for text detection in advertisement images was evaluated. A total of 400 digital advertisement  images were manually collected and annotated for use in this study. Results of comparing the performance of selected CNN models with  the SSD architecture for text detection from advertisement images showed that Resnet-50 performed well with the detection of small  texts with a mean Average Precision (mAP) of 0.736, AP(small) of 0.692 and AR(small) of 0.781. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估用于广告图像文本检测的 SSD 中高效特征提取的选定 CNN 模型
数字广告利用数字媒体和技术推广商品和服务。这些数字广告图像包含所宣传产品和服务的重要信息,并试图说服潜在客户采取具体行动与广告商联系。从广告图像中手动提取信息既繁琐又容易出错。使用单镜头检测(SSD)从图像、广告牌和路标中检测文字的文献很多。然而,这些文献并未探讨其在广告图像文本检测方面的性能。因此,有必要评估这些模型在广告图像上的性能。本文评估了三种选定的卷积神经网络(CNN)模型(Resnet-50、Mobilenetv2 和 Resnet-101)在广告图像中使用 SSD 进行文本检测的性能。本研究共人工收集了 400 幅数字广告图像并进行了标注。对所选 CNN 模型与 SSD 架构在广告图像文本检测方面的性能进行比较的结果表明,Resnet-50 在小文本检测方面表现良好,平均精度 (mAP) 为 0.736,AP(small) 为 0.692,AR(small) 为 0.781。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of malting and/or fermentation on proximate composition of FARO 44 rice plus soybean based complementary foods Family size preference and associated factors among women using antenatal care services in Kaduna Metropolis, Nigeria Antiproliferative potential of root bark extract of Adenodolichos Paniculatus (Hua & Hutch) against ovarian human cancer cell lines (A2780) Investigation of the impact of Gadon Kaya gate dumpsite on the underground water system in Kano Metropolis using the passive electrical resistivity profiling Synthesis and spectroscopic analysis of Illite clay - silica nanocomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1