New Solitary Waves for Thin-Film Ferroelectric Material Equation Arising in Dielectric Materials

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-17 DOI:10.2478/ama-2024-0041
J. Manafian, Walla Rahim Juadih, Amitha Manmohan Rao, Baharak Eslami, Natavan Allahverdiyeva, Parvin Mustafayeva
{"title":"New Solitary Waves for Thin-Film Ferroelectric Material Equation Arising in Dielectric Materials","authors":"J. Manafian, Walla Rahim Juadih, Amitha Manmohan Rao, Baharak Eslami, Natavan Allahverdiyeva, Parvin Mustafayeva","doi":"10.2478/ama-2024-0041","DOIUrl":null,"url":null,"abstract":"\n In this paper, the thin-film ferroelectric material equation (TFFME), which enables the propagation of solitary polarisation in thin-film ferroelectric materials is investigated, will be expressed through the non-linear evolution models. Ferroelectrics are dielectric materials that explain wave propagation non-linear demeanors. The non-linear wave propagation form is administrated by TFFME. To investigate the characterisations of new waves and solitonic properties of the TFFME, the modified exponential Jacobi technique and rational exp(−ϕ(η))-expansion technique are used. Plenty of alternative responses may be achieved by employing individual formulas; each of these solutions is offered by some plain graphs. The validity of such schemes and solutions may be exhibited by assessing how well the relevant schemes and solutions match up. The effect of the free variables on the manner of acting of reached plots to a few solutions in the exact forms was also explored depending upon the nature of non-linearities. The descriptive characteristics of the reached results are presented and analysed by some density, two- and three-dimensional figures. We believe that our results would pave the way for future research generating optical memories based on non-linear solitons.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2024-0041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the thin-film ferroelectric material equation (TFFME), which enables the propagation of solitary polarisation in thin-film ferroelectric materials is investigated, will be expressed through the non-linear evolution models. Ferroelectrics are dielectric materials that explain wave propagation non-linear demeanors. The non-linear wave propagation form is administrated by TFFME. To investigate the characterisations of new waves and solitonic properties of the TFFME, the modified exponential Jacobi technique and rational exp(−ϕ(η))-expansion technique are used. Plenty of alternative responses may be achieved by employing individual formulas; each of these solutions is offered by some plain graphs. The validity of such schemes and solutions may be exhibited by assessing how well the relevant schemes and solutions match up. The effect of the free variables on the manner of acting of reached plots to a few solutions in the exact forms was also explored depending upon the nature of non-linearities. The descriptive characteristics of the reached results are presented and analysed by some density, two- and three-dimensional figures. We believe that our results would pave the way for future research generating optical memories based on non-linear solitons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
薄膜铁电材料的新孤波 在介电材料中产生的方程
本文将研究薄膜铁电材料方程(TFFME),该方程通过非线性演化模型来表达薄膜铁电材料中孤极化的传播。铁电材料是一种介电材料,可以解释波的非线性传播特性。非线性波传播形式由 TFFME 管理。为了研究 TFFME 的新波特征和孤子特性,使用了修正的指数雅可比技术和有理 exp(-j(η)) 展开技术。通过使用不同的公式,可以获得大量的替代性响应;每种解决方案都由一些普通图形提供。通过评估相关方案和解法的匹配程度,可以看出这些方案和解法的有效性。此外,还根据非线性的性质,探讨了自由变量对以精确形式得出的图解的作用方式的影响。通过一些密度图、二维图和三维图展示和分析了所得出结果的描述性特征。我们相信,我们的研究结果将为未来基于非线性孤子生成光学记忆的研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1