An implementation of the particle flow filter in an atmospheric model

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-17 DOI:10.1175/mwr-d-24-0006.1
Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson
{"title":"An implementation of the particle flow filter in an atmospheric model","authors":"Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson","doi":"10.1175/mwr-d-24-0006.1","DOIUrl":null,"url":null,"abstract":"\nThe particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 39","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-24-0006.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气模型中粒子流过滤器的实现
粒子流滤波器(PFF)有望用于高维系统中的全非线性数据同化(DA)。然而,它在大气模型中的应用还相对较少。在本研究中,我们开发了一种新算法 PFF-DART,以便对高维大气模型进行数据同化。PFF-DART 结合了数据同化研究试验台(DART)中的 PFF 和两步集合滤波算法,利用了 DART 的高度并行结构。为了评估 PFF-DART 的性能,我们在一个简化的大气环流模式中进行了观测系统模拟试验(OSSE),并将 PFF-DART 与现有的线性和高斯 DA 方法进行了性能比较。利用 PFF-DART 算法,我们首次证明了 PFF 能够在为期一年的循环 DA OSSE 中产生稳定的结果。此外,PFF-DART 算法还保留了 PFF 的重要功能,即改进非线性和非高斯观测数据的同化。最后,我们强调,PFF-DART 是一种多功能算法,可以与许多其他非高斯数据同化技术相结合。这种特性使它成为一种有希望在未来更复杂的数值天气预报模式中得到进一步研究的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A DNA Aptamer as a Chemical Tool to Modulate MEX3C-Mediated mRNA Destabilization. Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1