T. Yuwono, Mohd Hafiz Baharuddin, H. Zhivomirov, E. Wahyuni
{"title":"On the characterization of EM emission of electronic products: Case study for different program modes","authors":"T. Yuwono, Mohd Hafiz Baharuddin, H. Zhivomirov, E. Wahyuni","doi":"10.21924/cst.9.1.2024.1289","DOIUrl":null,"url":null,"abstract":"The characterization of the EM emissions for electronic products is crucial to ensure that the emissions have met the requirements of the EMC standards. For this, a more comprehensive testing is required to get more meaningful results. While, the emergence of non-stationary emissions is a challenge to obtain valid analysis results. So far, non-stationary EM emissions is not considered and treated properly in the emission analysis. This paper presents a new method for the analysis of EM emissions from electronic devices as a case study by testing three different program modes (scenarios) of Intel Galileo board. These program modes were designed to vary processing intensity in its memory and processor. A comparison was also made between the actual situation (the presence of non-stationary signals) and the hypothetical situation with the assumption that all emissions were stationary. As a result, a significant difference was observed when the analysis considered the real scenario of a non-stationary emission. The ratio between the average autocorrelation using the proposed algorithm and the average correlation by ignoring the non-stationarity of the emission signal was 113.6 times. The study concludes that different program modes produce the different characteristics of EM emissions, making some of them non-stationary. Hence, we strongly suggest the consideration of the non-stationarity of the EM emissions in characterizing complex electronic devices.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":"208 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.9.1.2024.1289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of the EM emissions for electronic products is crucial to ensure that the emissions have met the requirements of the EMC standards. For this, a more comprehensive testing is required to get more meaningful results. While, the emergence of non-stationary emissions is a challenge to obtain valid analysis results. So far, non-stationary EM emissions is not considered and treated properly in the emission analysis. This paper presents a new method for the analysis of EM emissions from electronic devices as a case study by testing three different program modes (scenarios) of Intel Galileo board. These program modes were designed to vary processing intensity in its memory and processor. A comparison was also made between the actual situation (the presence of non-stationary signals) and the hypothetical situation with the assumption that all emissions were stationary. As a result, a significant difference was observed when the analysis considered the real scenario of a non-stationary emission. The ratio between the average autocorrelation using the proposed algorithm and the average correlation by ignoring the non-stationarity of the emission signal was 113.6 times. The study concludes that different program modes produce the different characteristics of EM emissions, making some of them non-stationary. Hence, we strongly suggest the consideration of the non-stationarity of the EM emissions in characterizing complex electronic devices.