Nirmala Bhatt, B. Gorain, Kaushik Mondal, S. Pandit
{"title":"Distributed Independent Sets in Interval and Segment Intersection Graphs","authors":"Nirmala Bhatt, B. Gorain, Kaushik Mondal, S. Pandit","doi":"10.1142/s0129054124500084","DOIUrl":null,"url":null,"abstract":"The Maximum Independent Set problem is well-studied in graph theory and related areas. An independent set of a graph is a subset of non-adjacent vertices of the graph. A maximum independent set is an independent set of maximum size. This paper studies the Maximum Independent Set problem in some classes of geometric intersection graphs in a distributed setting. More precisely, we study the Maximum Independent Set problem on two geometric intersection graphs, interval and axis-parallel segment intersection graphs, and present deterministic distributed algorithms in a model that is similar but a little weaker than the local communication model. We compute the maximum independent set on interval graphs in [Formula: see text] rounds and [Formula: see text] messages, where [Formula: see text] is the size of the maximum independent set and [Formula: see text] is the number of nodes in the graph. We provide a matching lower bound of [Formula: see text] on the number of rounds, whereas [Formula: see text] is a trivial lower bound on message complexity. Thus, our algorithm is both time and message-optimal. We also study the Maximum Independent Set problem in interval count [Formula: see text] graphs, a special case of the interval graphs where the intervals have exactly [Formula: see text] different lengths. We propose an [Formula: see text]-approximation algorithm that runs in [Formula: see text] round. For axis-parallel segment intersection graphs, we design an [Formula: see text]-approximation algorithm that obtains a solution in [Formula: see text] rounds. The results in this paper extend the results of Molla et al. [J. Parallel Distrib. Comput. 2019].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124500084","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Maximum Independent Set problem is well-studied in graph theory and related areas. An independent set of a graph is a subset of non-adjacent vertices of the graph. A maximum independent set is an independent set of maximum size. This paper studies the Maximum Independent Set problem in some classes of geometric intersection graphs in a distributed setting. More precisely, we study the Maximum Independent Set problem on two geometric intersection graphs, interval and axis-parallel segment intersection graphs, and present deterministic distributed algorithms in a model that is similar but a little weaker than the local communication model. We compute the maximum independent set on interval graphs in [Formula: see text] rounds and [Formula: see text] messages, where [Formula: see text] is the size of the maximum independent set and [Formula: see text] is the number of nodes in the graph. We provide a matching lower bound of [Formula: see text] on the number of rounds, whereas [Formula: see text] is a trivial lower bound on message complexity. Thus, our algorithm is both time and message-optimal. We also study the Maximum Independent Set problem in interval count [Formula: see text] graphs, a special case of the interval graphs where the intervals have exactly [Formula: see text] different lengths. We propose an [Formula: see text]-approximation algorithm that runs in [Formula: see text] round. For axis-parallel segment intersection graphs, we design an [Formula: see text]-approximation algorithm that obtains a solution in [Formula: see text] rounds. The results in this paper extend the results of Molla et al. [J. Parallel Distrib. Comput. 2019].
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing