CO2 transformed into highly active catalysts for the oxygen reduction reaction via low-temperature molten salt electrolysis

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-07-19 DOI:10.1016/j.elecom.2024.107781
Anna-Liis Remmel , Sander Ratso , Kerli Liivand , Mati Danilson , Kätlin Kaare , Valdek Mikli , Ivar Kruusenberg
{"title":"CO2 transformed into highly active catalysts for the oxygen reduction reaction via low-temperature molten salt electrolysis","authors":"Anna-Liis Remmel ,&nbsp;Sander Ratso ,&nbsp;Kerli Liivand ,&nbsp;Mati Danilson ,&nbsp;Kätlin Kaare ,&nbsp;Valdek Mikli ,&nbsp;Ivar Kruusenberg","doi":"10.1016/j.elecom.2024.107781","DOIUrl":null,"url":null,"abstract":"<div><p>The implementation of a technology capable of capturing and converting CO<sub>2</sub> into valuable products is one of the key requirements for limiting the effects of our carbon-intensive industries. At the same time, future CO<sub>2</sub> emissions need to be reduced to combat climate change, meaning that new devices capable of storing and converting energy without CO<sub>2</sub> emissions have to be adopted widely. In this work, we demonstrate catalysts made directly from CO<sub>2</sub> for fuel cells and zinc-air batteries. The molten salt electrolysis process is used to electrodeposit solid carbon from CO<sub>2</sub> in two mixtures, a known eutectic mixture of Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> and a new mixture containing 0.1 mol of LiOH in addition. The effects of the electrolyte towards the final carbon product and its electrocatalytic activity are analysed using the rotating disk electrode method, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The porosity of the materials is described by N<sub>2</sub> adsorption and the best performing catalyst is compared to the activity of a commercial 20 wt% PtRu/C material in a zinc-air battery.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107781"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001243/pdfft?md5=2bd4bc43b3c3d3126635e6316a69716e&pid=1-s2.0-S1388248124001243-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of a technology capable of capturing and converting CO2 into valuable products is one of the key requirements for limiting the effects of our carbon-intensive industries. At the same time, future CO2 emissions need to be reduced to combat climate change, meaning that new devices capable of storing and converting energy without CO2 emissions have to be adopted widely. In this work, we demonstrate catalysts made directly from CO2 for fuel cells and zinc-air batteries. The molten salt electrolysis process is used to electrodeposit solid carbon from CO2 in two mixtures, a known eutectic mixture of Li2CO3, Na2CO3, K2CO3 and a new mixture containing 0.1 mol of LiOH in addition. The effects of the electrolyte towards the final carbon product and its electrocatalytic activity are analysed using the rotating disk electrode method, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The porosity of the materials is described by N2 adsorption and the best performing catalyst is compared to the activity of a commercial 20 wt% PtRu/C material in a zinc-air battery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过低温熔盐电解将二氧化碳转化为用于氧还原反应的高活性催化剂
采用能够捕获二氧化碳并将其转化为有价值产品的技术,是限制碳密集型工业影响的关键要求之一。与此同时,为了应对气候变化,必须减少未来的二氧化碳排放量,这意味着必须广泛采用能够在不排放二氧化碳的情况下储存和转换能量的新设备。在这项工作中,我们展示了直接利用二氧化碳制成的催化剂,可用于燃料电池和锌-空气电池。我们采用熔盐电解工艺,在两种混合物(一种是已知的 Li2CO3、Na2CO3、K2CO3 共晶混合物,另一种是含有 0.1 摩尔 LiOH 的新混合物)中电沉积二氧化碳固态碳。使用旋转盘电极法、X 射线衍射、X 射线光电子能谱和扫描电子显微镜分析了电解质对最终碳产品及其电催化活性的影响。材料的多孔性是通过 N2 吸附来描述的,并将性能最好的催化剂与锌-空气电池中 20 wt% PtRu/C 商业材料的活性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1