SHIELD: A Secure Heuristic Integrated Environment for Load Distribution in Rural-AI

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2024-07-17 DOI:10.1016/j.future.2024.07.026
{"title":"SHIELD: A Secure Heuristic Integrated Environment for Load Distribution in Rural-AI","authors":"","doi":"10.1016/j.future.2024.07.026","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing adoption of edge computing in rural areas is leading to a substantial rise in data generation, necessitating the need for development of advanced load balancing algorithms. This is particularly important in applications that utilise existing, though limited, computational and data communication infrastructures. Furthermore, rural communities have growing concerns regarding the privacy, security, and ownership of the data produced within their agricultural fields. Load distribution in rural edge devices can enhance agricultural practices by improving resource usage, decision-making, and addressing network connectivity challenges. Managing resource utilisation in this way also improves economic investments made in managing and deploying edge devices in rural environments. In this work, we propose SHIELD, a security-aware load balancing framework, primarily designed for edge-based systems in rural areas. For handling environments with limited connectivity, SHIELD efficiently manages tasks and computational resources by categorising them into restricted, public and private, shared respectively. It also allocates tasks considering key performance factors such as completion time, resource utilisation, failure rate, and security. The framework is evaluated on a weed detection scenario in precision agriculture, using three federated learning (FL) variants (local model training, global model aggregation, and model prediction) with the ResNet-50 model trained on the DeepWeeds image classification dataset. The proposed framework also integrates encryption and task replication techniques for data confidentiality, integrity, and availability. Experimental results show that SHIELD demonstrates an average of 23% (using Parsl), 29% (using OpenWhisk) improvement in failure rate and 18 s (Parsl), 13 s (OpenWhisk) average improvement in makespan compared to other task allocation approaches, such as secure variants of random, round robin, and least loaded.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24003844","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing adoption of edge computing in rural areas is leading to a substantial rise in data generation, necessitating the need for development of advanced load balancing algorithms. This is particularly important in applications that utilise existing, though limited, computational and data communication infrastructures. Furthermore, rural communities have growing concerns regarding the privacy, security, and ownership of the data produced within their agricultural fields. Load distribution in rural edge devices can enhance agricultural practices by improving resource usage, decision-making, and addressing network connectivity challenges. Managing resource utilisation in this way also improves economic investments made in managing and deploying edge devices in rural environments. In this work, we propose SHIELD, a security-aware load balancing framework, primarily designed for edge-based systems in rural areas. For handling environments with limited connectivity, SHIELD efficiently manages tasks and computational resources by categorising them into restricted, public and private, shared respectively. It also allocates tasks considering key performance factors such as completion time, resource utilisation, failure rate, and security. The framework is evaluated on a weed detection scenario in precision agriculture, using three federated learning (FL) variants (local model training, global model aggregation, and model prediction) with the ResNet-50 model trained on the DeepWeeds image classification dataset. The proposed framework also integrates encryption and task replication techniques for data confidentiality, integrity, and availability. Experimental results show that SHIELD demonstrates an average of 23% (using Parsl), 29% (using OpenWhisk) improvement in failure rate and 18 s (Parsl), 13 s (OpenWhisk) average improvement in makespan compared to other task allocation approaches, such as secure variants of random, round robin, and least loaded.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SHIELD:用于农村人工智能负载分配的安全启发式集成环境
农村地区越来越多地采用边缘计算,导致数据生成量大幅增加,因此需要开发先进的负载平衡算法。这对于利用现有(尽管有限)计算和数据通信基础设施的应用尤为重要。此外,农村社区对其农田中产生的数据的隐私、安全和所有权也越来越关注。农村边缘设备的负载分配可以改善资源利用、决策和解决网络连接难题,从而加强农业实践。以这种方式管理资源利用率还能改善在农村环境中管理和部署边缘设备的经济投资。在这项工作中,我们提出了一个安全感知负载平衡框架 SHIELD,主要针对农村地区基于边缘的系统而设计。为了处理连接有限的环境,SHIELD 通过将任务和计算资源分别归类为受限的公共资源和私有的共享资源,有效地管理了任务和计算资源。它还考虑了完成时间、资源利用率、故障率和安全性等关键性能因素来分配任务。该框架在精准农业的杂草检测场景中进行了评估,使用了三种联合学习(FL)变体(本地模型训练、全局模型聚合和模型预测)和在 DeepWeeds 图像分类数据集上训练的 ResNet-50 模型。拟议框架还集成了加密和任务复制技术,以确保数据的保密性、完整性和可用性。实验结果表明,与随机、循环和最小加载的安全变体等其他任务分配方法相比,SHIELD 的失败率平均提高了 23%(使用 Parsl),平均提高了 29%(使用 OpenWhisk),平均时间跨度平均提高了 18 秒(Parsl)和 13 秒(OpenWhisk)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Analyzing inference workloads for spatiotemporal modeling An efficient federated learning solution for the artificial intelligence of things Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks Blockchain-based conditional privacy-preserving authentication scheme using PUF for vehicular ad hoc networks UAV-IRS-assisted energy harvesting for edge computing based on deep reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1