CRISPR/Cas9 opens new horizon of crop improvement under stress condition

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2024-07-28 DOI:10.1016/j.bbagen.2024.130685
{"title":"CRISPR/Cas9 opens new horizon of crop improvement under stress condition","authors":"","doi":"10.1016/j.bbagen.2024.130685","DOIUrl":null,"url":null,"abstract":"<div><p>Plants are exposed to a myriad of stresses, stemming from abiotic and biotic sources, significantly threatening agricultural productivity. The low crop yield, coupled with the global burden of population has resulted in the scarcity of quality food, exacerbating socio-economic issues like poverty, hunger, and malnutrition. Conventional breeding methods for the generation of stress-tolerant plants are time-consuming, limit genetic diversity, and are not sustainable for the consistent production of high-yielding crops. In recent years, the use of high-throughput, genome editing (GE) technique has revolutionized the crop-improvement paradigm, ushering greater prospects for agricultural progress. Among these tools, the Clustered regularly interspaced short palindromic repeat (CRISPR), and its associated nuclease protein Cas9, have appeared as a ground-breaking technology, allowing precise knockout (KO), upregulation, and downregulation of target gene expression. Apart from its high efficacy and speed, this programmable nuclease offers exceptional specificity with minimal off-target effects. Here in, we aim to review the latest findings on the application of the CRISPR/Cas9 genome editing tool for generating resilience in plants against environmental stresses.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524001284","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are exposed to a myriad of stresses, stemming from abiotic and biotic sources, significantly threatening agricultural productivity. The low crop yield, coupled with the global burden of population has resulted in the scarcity of quality food, exacerbating socio-economic issues like poverty, hunger, and malnutrition. Conventional breeding methods for the generation of stress-tolerant plants are time-consuming, limit genetic diversity, and are not sustainable for the consistent production of high-yielding crops. In recent years, the use of high-throughput, genome editing (GE) technique has revolutionized the crop-improvement paradigm, ushering greater prospects for agricultural progress. Among these tools, the Clustered regularly interspaced short palindromic repeat (CRISPR), and its associated nuclease protein Cas9, have appeared as a ground-breaking technology, allowing precise knockout (KO), upregulation, and downregulation of target gene expression. Apart from its high efficacy and speed, this programmable nuclease offers exceptional specificity with minimal off-target effects. Here in, we aim to review the latest findings on the application of the CRISPR/Cas9 genome editing tool for generating resilience in plants against environmental stresses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 为逆境条件下的作物改良开辟了新天地
植物面临着来自非生物和生物的各种压力,严重威胁着农业生产力。作物产量低,再加上全球人口负担沉重,导致优质粮食匮乏,加剧了贫困、饥饿和营养不良等社会经济问题。传统的抗逆植物育种方法耗时长,限制了遗传多样性,无法持续生产高产作物。近年来,高通量基因组编辑(GE)技术的使用彻底改变了作物改良模式,为农业进步带来了更广阔的前景。在这些工具中,聚类规则间隔短回文重复(CRISPR)及其相关的核酸酶蛋白 Cas9 作为一项突破性技术出现,可以精确地敲除(KO)、上调和下调目标基因的表达。这种可编程核酸酶不仅高效快速,而且特异性极强,脱靶效应极小。在此,我们旨在回顾有关应用 CRISPR/Cas9 基因组编辑工具提高植物抗环境胁迫能力的最新研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
Multispectral and molecular simulation of the interaction of human α1-acid glycoprotein with palbociclib. METTL3-driven m6A modification of lncRNA FAM230B suppresses ferroptosis by modulating miR-27a-5p/BTF3 axis in gastric cancer Sonodynamic inactivation of gram-negative and gram-positive bacteria in the presence of phenothiazine compounds toluidine blue and azurin A Glucose induced regulation of iron transporters implicates kidney iron accumulation Resistance-based directed evolution of nanobodies for higher affinity in prokaryotes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1