A matheuristic with re-lot-sizing strategies for flexible job-shop rescheduling problem with lot-streaming and machine reconfigurations

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2024-07-27 DOI:10.1016/j.ejor.2024.07.030
Jiaxin Fan , Chunjiang Zhang , Fajun Yang , Weiming Shen , Liang Gao
{"title":"A matheuristic with re-lot-sizing strategies for flexible job-shop rescheduling problem with lot-streaming and machine reconfigurations","authors":"Jiaxin Fan ,&nbsp;Chunjiang Zhang ,&nbsp;Fajun Yang ,&nbsp;Weiming Shen ,&nbsp;Liang Gao","doi":"10.1016/j.ejor.2024.07.030","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a flexible job-shop rescheduling problem with lot-streaming and machine reconfigurations (FJRP-LSMR) for the total weighted tardiness minimization, where production setups between sublots are performed by assembling selected auxiliary modules to reconfigure machines. When a given long-term schedule is interrupted by dynamic events, such as machine breakdowns and job insertions, a rescheduling process is triggered to determine the lot-sizing plan, sublot sequences, and machine configurations simultaneously. A matheuristic with re-lot-sizing strategies (MH<span><math><msub><mrow></mrow><mrow><mi>R</mi><mi>L</mi><mi>S</mi></mrow></msub></math></span>) is proposed to address the FJRP-LSMR, which takes the genetic algorithm as the main framework and introduces a mixed integer linear programming (MILP) based lot-sizing optimization (LSO<span><math><msub><mrow></mrow><mrow><mi>R</mi><mi>L</mi><mi>S</mi></mrow></msub></math></span>) function to improve lot-sizing plans. Two re-lot-sizing strategies, namely complete re-lot-sizing and partial re-lot-sizing, are defined to reset more sublot sizes in rescheduling processes, thus the solution space that can be visited by the MILP model is greatly expanded for further improvements. Four groups of test instances and a complex real-world industrial case are adopted to evaluate the performance of the proposed methods. Extensive experimental results demonstrate that, with the help of re-lot-sizing strategies, the LSO<span><math><msub><mrow></mrow><mrow><mi>R</mi><mi>L</mi><mi>S</mi></mrow></msub></math></span> can find high-quality lot-sizing plans within a short period of time, and the proposed MH<span><math><msub><mrow></mrow><mrow><mi>R</mi><mi>L</mi><mi>S</mi></mrow></msub></math></span> shows the best performance in the optimality, stability, and convergence.</p></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724005848","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a flexible job-shop rescheduling problem with lot-streaming and machine reconfigurations (FJRP-LSMR) for the total weighted tardiness minimization, where production setups between sublots are performed by assembling selected auxiliary modules to reconfigure machines. When a given long-term schedule is interrupted by dynamic events, such as machine breakdowns and job insertions, a rescheduling process is triggered to determine the lot-sizing plan, sublot sequences, and machine configurations simultaneously. A matheuristic with re-lot-sizing strategies (MHRLS) is proposed to address the FJRP-LSMR, which takes the genetic algorithm as the main framework and introduces a mixed integer linear programming (MILP) based lot-sizing optimization (LSORLS) function to improve lot-sizing plans. Two re-lot-sizing strategies, namely complete re-lot-sizing and partial re-lot-sizing, are defined to reset more sublot sizes in rescheduling processes, thus the solution space that can be visited by the MILP model is greatly expanded for further improvements. Four groups of test instances and a complex real-world industrial case are adopted to evaluate the performance of the proposed methods. Extensive experimental results demonstrate that, with the help of re-lot-sizing strategies, the LSORLS can find high-quality lot-sizing plans within a short period of time, and the proposed MHRLS shows the best performance in the optimality, stability, and convergence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有批量流和机器重新配置的灵活作业车间重新安排问题的重新确定批量大小策略的数理方法
本文研究了一个灵活的作业车间重新排产问题(FJRP-LSMR),该问题具有批量流和机器重新配置功能,可实现总加权迟到时间最小化,其中子批次之间的生产设置是通过装配选定的辅助模块来重新配置机器完成的。当一个给定的长期计划被机器故障和作业插入等动态事件打断时,会触发一个重新排产过程,以同时确定批量计划、子批序列和机器配置。为解决 FJRP-LSMR 问题,我们提出了一种带有重新确定批量大小策略(MHRLS)的求知数学,它以遗传算法为主要框架,并引入了基于混合整数线性规划(MILP)的批量大小优化(LSORLS)函数来改进批量大小计划。定义了两种重新确定批量大小的策略,即完全重新确定批量大小和部分重新确定批量大小,以在重新安排流程中重置更多的子批量大小,从而大大扩展了 MILP 模型可访问的解空间,以便进一步改进。本文采用了四组测试实例和一个复杂的实际工业案例来评估所提出方法的性能。广泛的实验结果表明,在重新安排批量规模策略的帮助下,LSORLS 可以在短时间内找到高质量的批量规模计划,而所提出的 MHRLS 在最优性、稳定性和收敛性方面表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
Prelim p. 2; First issue - Editorial Board Editorial Board An exact method for the two-echelon split-delivery vehicle routing problem for liquefied natural gas delivery with the boil-off phenomenon The demand for hedging of oil producers: A tale of risk and regret Data-driven dynamic police patrolling: An efficient Monte Carlo tree search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1