Effect of the accelerated aging process on the thermal decomposition of LiAlH4-based composite solid propellants

Fateh Chalghoum , Mohammed Jouini , Amir Abdelaziz , Ahmed Fouzi Tarchoun , Hani Boukeciat , Slimane Bekhouche , Mokhtar Benziane , Djalal Trache
{"title":"Effect of the accelerated aging process on the thermal decomposition of LiAlH4-based composite solid propellants","authors":"Fateh Chalghoum ,&nbsp;Mohammed Jouini ,&nbsp;Amir Abdelaziz ,&nbsp;Ahmed Fouzi Tarchoun ,&nbsp;Hani Boukeciat ,&nbsp;Slimane Bekhouche ,&nbsp;Mokhtar Benziane ,&nbsp;Djalal Trache","doi":"10.1016/j.fpc.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, a study was carried out on the effect of the accelerated aging process on the thermal decomposition of two composite solid propellants based on ammonium perchlorate (AP) and hydroxy‑terminated polybutadiene (HTPB). The first one (CP1) was enriched with aluminum (Al) powders, while the second (CP2) contained a mixture of aluminum and lithium alanate (LiAlH<sub>4</sub>) as a high-energy fuel additive. The thermal properties of the investigated propellant samples were determined using differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques. The obtained results clearly demonstrated the effect of the aging process on the thermal degradation of the aged samples compared to the unaged ones, by shifting the temperature peaks of their main decomposition step to lower temperatures with a decrease in their DSC heat release. In addition, the residual unburnt propellant was increased, particularly for the complex metal hydride-based propellant. Kinetic modeling of the main thermal degradation phase, applying two advanced isoconversional methods, revealed a significant decrease in activation energy for the aged samples. Furthermore, the three-dimensional diffusion model involved during the investigated decomposition phase of the unaged samples was changed to a random nucleation model after 60 days of aging time.</div></div>","PeriodicalId":100531,"journal":{"name":"FirePhysChem","volume":"5 1","pages":"Pages 91-100"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FirePhysChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667134424000555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, a study was carried out on the effect of the accelerated aging process on the thermal decomposition of two composite solid propellants based on ammonium perchlorate (AP) and hydroxy‑terminated polybutadiene (HTPB). The first one (CP1) was enriched with aluminum (Al) powders, while the second (CP2) contained a mixture of aluminum and lithium alanate (LiAlH4) as a high-energy fuel additive. The thermal properties of the investigated propellant samples were determined using differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques. The obtained results clearly demonstrated the effect of the aging process on the thermal degradation of the aged samples compared to the unaged ones, by shifting the temperature peaks of their main decomposition step to lower temperatures with a decrease in their DSC heat release. In addition, the residual unburnt propellant was increased, particularly for the complex metal hydride-based propellant. Kinetic modeling of the main thermal degradation phase, applying two advanced isoconversional methods, revealed a significant decrease in activation energy for the aged samples. Furthermore, the three-dimensional diffusion model involved during the investigated decomposition phase of the unaged samples was changed to a random nucleation model after 60 days of aging time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速老化过程对基于 LiAlH4 的复合固体推进剂热分解的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
Effect of the accelerated aging process on the thermal decomposition of LiAlH4-based composite solid propellants Enhancing accuracy in equivalent in-service-time assessment for homogeneous solid propellants: A novel temperature-independent predictive model utilizing PCA of FTIR data Towards to some published misconceptions about TNT and ɛ-CL20 Exploring the combustion mechanism of single micron-sized aluminum particles with a numerical model Editorial From the Guest Editors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1