A two-way coupled CHANS model for flood emergency management, with a focus on temporary flood defences

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-07-26 DOI:10.1016/j.envsoft.2024.106166
{"title":"A two-way coupled CHANS model for flood emergency management, with a focus on temporary flood defences","authors":"","doi":"10.1016/j.envsoft.2024.106166","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel Coupled Human And Natural Systems (CHANS) modelling framework that integrates a hydrodynamic model with an agent-based model at the memory level within a multi-GPU computing environment. This two-way coupled model captures real-time interactions between human activities and flood dynamics, with a focus on the deployment of temporary flood defences during the 2015 Desmond flood in Carlisle, UK. The findings reveal that temporary defences can significantly reduce flood inundation by 30% with early warnings and 15% through real-time decision-making, leading to financial savings of £30 million and £15 million, respectively. The study further explores the decision-making process for effective emergency flood management, emphasising the importance of early warnings and resources optimisation. The new CHANS model provides a valuable tool for testing and optimising emergency flood management strategies, highlighting the necessity of directly incorporating human activities into flood risk management.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002275/pdfft?md5=7a068d49ed943987438a63fbe3cfc7b7&pid=1-s2.0-S1364815224002275-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002275","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel Coupled Human And Natural Systems (CHANS) modelling framework that integrates a hydrodynamic model with an agent-based model at the memory level within a multi-GPU computing environment. This two-way coupled model captures real-time interactions between human activities and flood dynamics, with a focus on the deployment of temporary flood defences during the 2015 Desmond flood in Carlisle, UK. The findings reveal that temporary defences can significantly reduce flood inundation by 30% with early warnings and 15% through real-time decision-making, leading to financial savings of £30 million and £15 million, respectively. The study further explores the decision-making process for effective emergency flood management, emphasising the importance of early warnings and resources optimisation. The new CHANS model provides a valuable tool for testing and optimising emergency flood management strategies, highlighting the necessity of directly incorporating human activities into flood risk management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于洪水应急管理的双向耦合 CHANS 模型,重点关注临时防洪设施
本研究提出了一种新颖的 "人类与自然系统耦合(CHANS)"建模框架,该框架在多 GPU 计算环境中将水动力模型与基于代理的内存级模型集成在一起。该双向耦合模型捕捉了人类活动与洪水动态之间的实时互动,重点研究了 2015 年英国卡莱尔德斯蒙德洪水期间临时防洪设施的部署情况。研究结果表明,通过预警和实时决策,临时防洪设施可将洪水淹没率分别大幅降低 30%和 15%,从而分别节省 3000 万英镑和 1500 万英镑的资金。该研究进一步探讨了有效应急洪水管理的决策过程,强调了预警和资源优化的重要性。新的 CHANS 模型为测试和优化紧急洪水管理策略提供了宝贵的工具,强调了将人类活动直接纳入洪水风险管理的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Assessing the influence of temperature on slope stability in a temperate climate: A nationwide spatial probability analysis in Italy Research progress and prospects of urban flooding simulation: From traditional numerical models to deep learning approaches Editorial Board An integrated, automated and modular approach for real-time weather monitoring of surface meteorological variables and short-range forecasting using machine learning The Fogees system for forecasting particulate matter concentrations in urban areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1