Generating neural architectures from parameter spaces for multi-agent reinforcement learning

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-09-01 DOI:10.1016/j.patrec.2024.07.013
Corentin Artaud, Varuna De-Silva, Rafael Pina, Xiyu Shi
{"title":"Generating neural architectures from parameter spaces for multi-agent reinforcement learning","authors":"Corentin Artaud,&nbsp;Varuna De-Silva,&nbsp;Rafael Pina,&nbsp;Xiyu Shi","doi":"10.1016/j.patrec.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, <em>returns</em> – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 272-278"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167865524002162/pdfft?md5=9d36e1cb3980d40cb66497131a82ff52&pid=1-s2.0-S0167865524002162-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, returns – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从多代理强化学习的参数空间生成神经架构
我们探索了一种数据驱动的神经网络参数生成方法,以确定生成模型能否捕捉神经网络检查点集合的基本分布。我们汇编了在多代理强化学习框架内训练的神经网络的检查点数据集,从而有可能产生以前从未见过的神经网络参数组合。特别是,我们的生成模型是一个基于条件变换器的变分自动编码器,当提供随机噪声和一个指定的性能指标(在我们的语境中是回报率)时,它会预测参数空间的适当分布,以实现所需的性能指标。我们的方法无需进一步微调,就能成功生成指定最优回报率的参数。我们还表明,使用这种方法生成的参数约束性更强、可变性更小,最重要的是,其性能与在多代理强化学习框架下直接训练的参数相当。我们在最先进算法中常用的神经网络架构上测试了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1