{"title":"Integrated GNSS-derived precipitable water vapor and remote sensing data for agricultural drought monitoring and impact analysis","authors":"Piyanan Pipatsitee , Sarawut Ninsawat , Nitin Kumar Tripathi , Mohanasundaram Shanmugam","doi":"10.1016/j.rsase.2024.101310","DOIUrl":null,"url":null,"abstract":"<div><p>Agricultural drought is a natural disaster that impacts soil water deficiency, plant water stress, and yield loss. It has several effective drought indices to monitor the impact on agriculture, particularly the evapotranspiration deficit index (ETDI). However, this index has exposed the inconsistency of spatial potential evapotranspiration (PET) because of the restricted spatial distribution of meteorological stations and the influence of spatial heterogeneity. The present study aims to develop the fine spatial PET using the Global Navigation Satellite System-derived Precipitable Water Vapor (GNSS-PWV) and remote sensing data for enhancing the ETDI and determining the impacts of drought on sugarcane yield. The grid PET (GPET) model is developed by the correlation between the land surface temperature from Moderate Resolution Imaging Spectroradiometer (MODIS LST) and the PET from the Revised Potential Evapotranspiration (RPET) model as the ground observations to estimate daily PET at 30-m spatial resolution using spatial extrapolation technique. In addition, the actual evapotranspiration (AET) was evaluated using the Surface Energy Algorithms for Land (SEBAL) algorithm. Both spatial PET and AET were utilized to compute the ETDI as an agricultural drought index. Then, the ETDI was correlated with sugarcane yield to investigate the impact of drought on yield. The results indicated that the GPET model had a strong correlation with the RPET model (R<sup>2</sup> = 0.73 and RMSE = 0.84 mm) and relatively good accuracy (RSR = 0.57 and NSE = 0.68). This proposed model could be applied to compute the ETDI with fine spatial resolution. Moreover, the normalized yield of sugarcane exhibited a negative correlation with ETDI in the period from March to April 2020 with a strong relationship (r = −0.83). Therefore, the ETDI is an appropriate index for drought monitoring and determining the effects of drought on yield. These findings are useful for supporting the decision-makers to enhance the national policies for water management in agriculture.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101310"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural drought is a natural disaster that impacts soil water deficiency, plant water stress, and yield loss. It has several effective drought indices to monitor the impact on agriculture, particularly the evapotranspiration deficit index (ETDI). However, this index has exposed the inconsistency of spatial potential evapotranspiration (PET) because of the restricted spatial distribution of meteorological stations and the influence of spatial heterogeneity. The present study aims to develop the fine spatial PET using the Global Navigation Satellite System-derived Precipitable Water Vapor (GNSS-PWV) and remote sensing data for enhancing the ETDI and determining the impacts of drought on sugarcane yield. The grid PET (GPET) model is developed by the correlation between the land surface temperature from Moderate Resolution Imaging Spectroradiometer (MODIS LST) and the PET from the Revised Potential Evapotranspiration (RPET) model as the ground observations to estimate daily PET at 30-m spatial resolution using spatial extrapolation technique. In addition, the actual evapotranspiration (AET) was evaluated using the Surface Energy Algorithms for Land (SEBAL) algorithm. Both spatial PET and AET were utilized to compute the ETDI as an agricultural drought index. Then, the ETDI was correlated with sugarcane yield to investigate the impact of drought on yield. The results indicated that the GPET model had a strong correlation with the RPET model (R2 = 0.73 and RMSE = 0.84 mm) and relatively good accuracy (RSR = 0.57 and NSE = 0.68). This proposed model could be applied to compute the ETDI with fine spatial resolution. Moreover, the normalized yield of sugarcane exhibited a negative correlation with ETDI in the period from March to April 2020 with a strong relationship (r = −0.83). Therefore, the ETDI is an appropriate index for drought monitoring and determining the effects of drought on yield. These findings are useful for supporting the decision-makers to enhance the national policies for water management in agriculture.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems