Lunqian Wang , Xinghua Wang , Weilin Liu , Hao Ding , Bo Xia , Zekai Zhang , Jinglin Zhang , Sen Xu
{"title":"A unified architecture for super-resolution and segmentation of remote sensing images based on similarity feature fusion","authors":"Lunqian Wang , Xinghua Wang , Weilin Liu , Hao Ding , Bo Xia , Zekai Zhang , Jinglin Zhang , Sen Xu","doi":"10.1016/j.displa.2024.102800","DOIUrl":null,"url":null,"abstract":"<div><p>The resolution of the image has an important impact on the accuracy of segmentation. Integrating super-resolution (SR) techniques in the semantic segmentation of remote sensing images contributes to the improvement of precision and accuracy, especially when the images are blurred. In this paper, a novel and efficient SR semantic segmentation network (SRSEN) is designed by taking advantage of the similarity between SR and segmentation tasks in feature processing. SRSEN consists of the multi-scale feature encoder, the SR fusion decoder, and the multi-path feature refinement block, which adaptively establishes the feature associations between segmentation and SR tasks to improve the segmentation accuracy of blurred images. Experiments show that the proposed method achieves higher segmentation accuracy on fuzzy images compared to state-of-the-art models. Specifically, the mIoU of the proposed SRSEN is 3%–6% higher than other state-of-the-art models on low-resolution LoveDa, Vaihingen, and Potsdam datasets.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102800"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001641","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The resolution of the image has an important impact on the accuracy of segmentation. Integrating super-resolution (SR) techniques in the semantic segmentation of remote sensing images contributes to the improvement of precision and accuracy, especially when the images are blurred. In this paper, a novel and efficient SR semantic segmentation network (SRSEN) is designed by taking advantage of the similarity between SR and segmentation tasks in feature processing. SRSEN consists of the multi-scale feature encoder, the SR fusion decoder, and the multi-path feature refinement block, which adaptively establishes the feature associations between segmentation and SR tasks to improve the segmentation accuracy of blurred images. Experiments show that the proposed method achieves higher segmentation accuracy on fuzzy images compared to state-of-the-art models. Specifically, the mIoU of the proposed SRSEN is 3%–6% higher than other state-of-the-art models on low-resolution LoveDa, Vaihingen, and Potsdam datasets.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.