Sabatina Criscuolo , Andrea Apicella , Roberto Prevete , Luca Longo
{"title":"Interpreting the latent space of a Convolutional Variational Autoencoder for semi-automated eye blink artefact detection in EEG signals","authors":"Sabatina Criscuolo , Andrea Apicella , Roberto Prevete , Luca Longo","doi":"10.1016/j.csi.2024.103897","DOIUrl":null,"url":null,"abstract":"<div><p>Electroencephalography (EEG) allows the investigation of brain activity. However, neural signals often contain artefacts, hindering signal analysis. For example, eye-blink artefacts are particularly challenging due to their frequency overlap with neural signals. Artificial intelligence, particularly Variational Autoencoders (VAE), has shown promise in EEG artefact removal. This research explores the design and application of Convolutional VAEs for automatically detecting and removing eye blinks in EEG signals. The latent space of CVAE, trained on EEG topographic maps, is used to identify latent components that are selective for eye blinks. Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) are employed to evaluate the discriminative performance of each latent component. The most discriminative component, determined by the highest AUC, is modified to eliminate eye blinks. The evaluation of artefact removal involves visual inspection and Pearson correlation index assessment of the original EEG signal and the reconstructed clean version, focusing on the <span><math><mrow><mi>F</mi><mi>p</mi><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>F</mi><mi>p</mi><mn>2</mn></mrow></math></span> channels most affected by eye-blink artefacts. Results indicate that the proposed method effectively removes eye blinks without significant loss of information related to the neural signal, demonstrating Pearson correlation values around 0.60 for each subject. The contribution to the knowledge offered by this research study is the design and application of a novel offline pipeline for automatically detecting and removing eye blinks from multi-variate EEG signals without human intervention.</p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"92 ","pages":"Article 103897"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920548924000667/pdfft?md5=3ce75b85802532f0585db97e4d225a04&pid=1-s2.0-S0920548924000667-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548924000667","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalography (EEG) allows the investigation of brain activity. However, neural signals often contain artefacts, hindering signal analysis. For example, eye-blink artefacts are particularly challenging due to their frequency overlap with neural signals. Artificial intelligence, particularly Variational Autoencoders (VAE), has shown promise in EEG artefact removal. This research explores the design and application of Convolutional VAEs for automatically detecting and removing eye blinks in EEG signals. The latent space of CVAE, trained on EEG topographic maps, is used to identify latent components that are selective for eye blinks. Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) are employed to evaluate the discriminative performance of each latent component. The most discriminative component, determined by the highest AUC, is modified to eliminate eye blinks. The evaluation of artefact removal involves visual inspection and Pearson correlation index assessment of the original EEG signal and the reconstructed clean version, focusing on the and channels most affected by eye-blink artefacts. Results indicate that the proposed method effectively removes eye blinks without significant loss of information related to the neural signal, demonstrating Pearson correlation values around 0.60 for each subject. The contribution to the knowledge offered by this research study is the design and application of a novel offline pipeline for automatically detecting and removing eye blinks from multi-variate EEG signals without human intervention.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.