Dual-market quantitative trading: The dynamics of liquidity and turnover in financial markets

Qing Zhu , Chenyu Han , Yuze Li
{"title":"Dual-market quantitative trading: The dynamics of liquidity and turnover in financial markets","authors":"Qing Zhu ,&nbsp;Chenyu Han ,&nbsp;Yuze Li","doi":"10.1016/j.dsm.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Financial market liquidity is a popular research topic. Investor-driven research uses the turnover rate to measure liquidity and generally finds that the higher the stock turnover rate, the lower the returns. However, the traditional financial liquidity theory has been impacted by new machine-driven quantitative trading models. To explore high machine-driven liquidity and the impact of high turnover rates on returns, this study establishes a dual-market quantitative trading system, introduces a variational modal decomposition (VMD)-bidirectional gated recurrent unit (BiGRU) model for data prediction, and uses the back-end Hong Kong foreign exchange market to develop a quantitative trading strategy using the same rotating funds in the U.S. and Chinese stock markets. The experimental results show that given a principal amount of 210,000.00 CNY, the final predicted net return is 226,538.30 CNY, a net return of 107.86%, which is 40.6% higher than the net return of a single Chinese market. We conclude that, under machine-driven trading, increasing liquidity and turnover increase returns. This study provides a new perspective on liquidity theory that is useful for future financial market research and quantitative trading practices.</div></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Financial market liquidity is a popular research topic. Investor-driven research uses the turnover rate to measure liquidity and generally finds that the higher the stock turnover rate, the lower the returns. However, the traditional financial liquidity theory has been impacted by new machine-driven quantitative trading models. To explore high machine-driven liquidity and the impact of high turnover rates on returns, this study establishes a dual-market quantitative trading system, introduces a variational modal decomposition (VMD)-bidirectional gated recurrent unit (BiGRU) model for data prediction, and uses the back-end Hong Kong foreign exchange market to develop a quantitative trading strategy using the same rotating funds in the U.S. and Chinese stock markets. The experimental results show that given a principal amount of 210,000.00 CNY, the final predicted net return is 226,538.30 CNY, a net return of 107.86%, which is 40.6% higher than the net return of a single Chinese market. We conclude that, under machine-driven trading, increasing liquidity and turnover increase returns. This study provides a new perspective on liquidity theory that is useful for future financial market research and quantitative trading practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双市场量化交易:金融市场流动性和成交量的动态变化
金融市场流动性是一个热门的研究课题。投资者驱动研究使用换手率来衡量流动性,通常发现股票换手率越高,收益越低。然而,传统的金融流动性理论已经受到新的机器驱动的量化交易模型的冲击。为了探讨高机器驱动的流动性和高换手率对收益的影响,本研究建立了双市场量化交易系统,引入变分模态分解(VMD)-双向门控循环单元(BiGRU)模型进行数据预测,并利用后端香港外汇市场在美国和中国股票市场使用相同的轮换资金制定量化交易策略。实验结果表明,在本金为210,000.00元的情况下,最终预测净收益率为226,538.30元,净收益率为107.86%,比单一中国市场的净收益率高出40.6%。我们得出结论,在机器驱动的交易下,流动性和周转率的增加会增加回报。本研究为未来的金融市场研究和量化交易实践提供了一个新的流动性理论视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
ESG performance and executive compensation levels: an empirical study Prediction of retail commodity hot-spots: a machine learning approach Particle swarm optimization-enhanced machine learning and deep learning techniques for Internet of Things intrusion detection Automatic method for identification of cycles in COVID-19 time-series data Counterfactual synthetic minority oversampling technique: solving healthcare's imbalanced learning challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1