Smart grid data compression and reconstruction by wavelet packet transform

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-07-20 DOI:10.1016/j.mex.2024.102872
{"title":"Smart grid data compression and reconstruction by wavelet packet transform","authors":"","doi":"10.1016/j.mex.2024.102872","DOIUrl":null,"url":null,"abstract":"<div><p>A smart grid is a power network from generation to consumers and provides beneficial, steady, and safe electricity. It utilizes smart meters for billing, phasor measurement units to check the system's health., etc. As a result, it contains enormous volumes of real-time data that may be shared and stored by users, control centers, and services in a smart grid. It weakens the smart grid's communication networks. The size of the data in a smart grid will grow extremely in the future. As a result, it must reduce distortion in data compression and denoise while minimizing the demand on storage and communication networks. The goal of data compression and denoising should be to maximally conserve the useful data while accurately reflecting the state of the system and providing sufficient data regeneration at the receiving end. This paper has used lower-order different wavelets to represent a design to compress and reconstruct data at level three using wavelet Packet Transform. It works on the phasor measurement unit's current magnitude and voltage sag signals.</p><ul><li><span>•</span><span><p>The proposed design has a better compression ratio.</p></span></li><li><span>•</span><span><p>Low reconstruction error.</p></span></li><li><span>•</span><span><p>This design is easy to access, systematic, profitable, and not time-consuming.</p></span></li></ul></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215016124003248/pdfft?md5=3812e18d214ba3ab567a0735c0c72eed&pid=1-s2.0-S2215016124003248-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124003248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A smart grid is a power network from generation to consumers and provides beneficial, steady, and safe electricity. It utilizes smart meters for billing, phasor measurement units to check the system's health., etc. As a result, it contains enormous volumes of real-time data that may be shared and stored by users, control centers, and services in a smart grid. It weakens the smart grid's communication networks. The size of the data in a smart grid will grow extremely in the future. As a result, it must reduce distortion in data compression and denoise while minimizing the demand on storage and communication networks. The goal of data compression and denoising should be to maximally conserve the useful data while accurately reflecting the state of the system and providing sufficient data regeneration at the receiving end. This paper has used lower-order different wavelets to represent a design to compress and reconstruct data at level three using wavelet Packet Transform. It works on the phasor measurement unit's current magnitude and voltage sag signals.

  • The proposed design has a better compression ratio.

  • Low reconstruction error.

  • This design is easy to access, systematic, profitable, and not time-consuming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用小波包变换进行智能电网数据压缩和重构
智能电网是一个从发电厂到用户的电力网络,提供有益、稳定和安全的电力。它利用智能电表计费,利用相位测量单元检查系统健康状况等。因此,它包含了大量的实时数据,这些数据可能会被智能电网中的用户、控制中心和服务共享和存储。它削弱了智能电网的通信网络。未来,智能电网中的数据规模将极速增长。因此,必须在数据压缩和去噪中减少失真,同时尽量减少对存储和通信网络的需求。数据压缩和去噪的目标应该是最大限度地保存有用数据,同时准确反映系统状态,并在接收端提供足够的数据再生。本文使用低阶不同的小波来表示一种设计,利用小波包变换来压缩和重建三级数据。它适用于相量测量单元的电流幅值和电压下陷信号。该设计具有较好的压缩比,重建误差小,易于获取、系统性强、收益高且不耗时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊最新文献
ViT-HHO: Optimized vision transformer for diabetic retinopathy detection using Harris Hawk optimization Standardized lab-scale production of the recombinant fusion protein HUG for the nanoscale analysis of bilirubin The TOPSIS method: Figuring the landslide susceptibility using Excel and GIS A method to improve binary forecast skill verification Automated prediction of phosphorus concentration in soils using reflectance spectroscopy and machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1