Michal Bizzarri , Lukáš Hruda , Miroslav Lávička , Jan Vršek
{"title":"Symmetry group detection of point clouds in 3D via a decomposition method","authors":"Michal Bizzarri , Lukáš Hruda , Miroslav Lávička , Jan Vršek","doi":"10.1016/j.cagd.2024.102376","DOIUrl":null,"url":null,"abstract":"<div><p>Analyzing the symmetries present in point clouds, which represent sets of 3D coordinates, is important for understanding their underlying structure and facilitating various applications. In this paper, we propose a novel decomposition-based method for detecting the entire symmetry group of 3D point clouds. Our approach decomposes the point cloud into simpler shapes whose symmetry groups are easier to find. The exact symmetry group of the original point cloud is then derived from the symmetries of these individual components. The method presented in this paper is a direct extension of the approach recently formulated in <span><span>Bizzarri et al. (2022a)</span></span> for discrete curves in plane. The method can be easily modified also for perturbed data. This work contributes to the advancement of symmetry analysis in point clouds, providing a foundation for further research and enhancing applications in computer vision, robotics, and augmented reality.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102376"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing the symmetries present in point clouds, which represent sets of 3D coordinates, is important for understanding their underlying structure and facilitating various applications. In this paper, we propose a novel decomposition-based method for detecting the entire symmetry group of 3D point clouds. Our approach decomposes the point cloud into simpler shapes whose symmetry groups are easier to find. The exact symmetry group of the original point cloud is then derived from the symmetries of these individual components. The method presented in this paper is a direct extension of the approach recently formulated in Bizzarri et al. (2022a) for discrete curves in plane. The method can be easily modified also for perturbed data. This work contributes to the advancement of symmetry analysis in point clouds, providing a foundation for further research and enhancing applications in computer vision, robotics, and augmented reality.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.