Si-Zhou Liang , Ya-Jun Chang , Philip Semaha , Li-Zhu Liu , Yan Gao , Zhi Wang , Wei-Guo Zhang
{"title":"A maverick: Environmentally relevant concentrations of nonylphenol attenuate the plasmid-mediated conjugative transfer of antibiotic resistance genes","authors":"Si-Zhou Liang , Ya-Jun Chang , Philip Semaha , Li-Zhu Liu , Yan Gao , Zhi Wang , Wei-Guo Zhang","doi":"10.1016/j.wroa.2024.100241","DOIUrl":null,"url":null,"abstract":"<div><p>Given that many organic pollutants have been reported to facilitate the plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs), it was naturally deduced that nonylphenol (NP) can also have this kind of effect. Whereas, this study demonstrates an entirely different result that environmentally relevant concentrations of NP attenuate plasmid-mediated ARGs conjugative transfer (maximum inhibition rate 64 %), further study show that NP exposure had no significant effect on bacterial growth, cell vitality, oxidative stress response, and expression of conjugation-relevant genes, which were reported to closely relate to the conjugative transfer in numerous studies. Conclusively, it was found that the dispersant function of NP impeded the occurrence of cell mating, thus was responsible for the decline of conjugative transfer. This study shows a new perspective on understanding the effect of organic pollutants like NP on the ARGs horizontal dissemination in environment.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"24 ","pages":"Article 100241"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000318/pdfft?md5=825587c1d724f818a79ffb6684271469&pid=1-s2.0-S2589914724000318-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000318","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given that many organic pollutants have been reported to facilitate the plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs), it was naturally deduced that nonylphenol (NP) can also have this kind of effect. Whereas, this study demonstrates an entirely different result that environmentally relevant concentrations of NP attenuate plasmid-mediated ARGs conjugative transfer (maximum inhibition rate 64 %), further study show that NP exposure had no significant effect on bacterial growth, cell vitality, oxidative stress response, and expression of conjugation-relevant genes, which were reported to closely relate to the conjugative transfer in numerous studies. Conclusively, it was found that the dispersant function of NP impeded the occurrence of cell mating, thus was responsible for the decline of conjugative transfer. This study shows a new perspective on understanding the effect of organic pollutants like NP on the ARGs horizontal dissemination in environment.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.