{"title":"A ‘deep’ review of video super-resolution","authors":"Subhadra Gopalakrishnan, Anustup Choudhury","doi":"10.1016/j.image.2024.117175","DOIUrl":null,"url":null,"abstract":"<div><p>Video super-resolution (VSR) is an ill-posed inverse problem where the goal is to obtain high-resolution video content from a low-resolution counterpart. In this survey, we trace the history of video super-resolution techniques beginning with traditional methods, showing the evolution towards techniques that use shallow networks and finally, the recent trends where deep learning algorithms result in state-of-the-art performance. Specifically, we consider 60 neural network-based VSR techniques in addition to 8 traditional VSR techniques. We extensively cover the deep learning-based techniques including the latest models and introduce a novel taxonomy depending on their architecture. We discuss the pros and cons of each category of techniques. We consider the various components of the problem including the choice of loss functions, evaluation criteria and the benchmark datasets used for evaluation. We present a comparison of the existing techniques using common datasets, providing insights into the relative rankings of these methods. We compare the network architectures based on their computation speed and the network complexity. We also discuss the limitations of existing loss functions and the evaluation criteria that are currently used and propose alternate suggestions. Finally, we identify some of the current challenges and provide future research directions towards video super-resolution, thus providing a comprehensive understanding of the problem.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"129 ","pages":"Article 117175"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000766","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Video super-resolution (VSR) is an ill-posed inverse problem where the goal is to obtain high-resolution video content from a low-resolution counterpart. In this survey, we trace the history of video super-resolution techniques beginning with traditional methods, showing the evolution towards techniques that use shallow networks and finally, the recent trends where deep learning algorithms result in state-of-the-art performance. Specifically, we consider 60 neural network-based VSR techniques in addition to 8 traditional VSR techniques. We extensively cover the deep learning-based techniques including the latest models and introduce a novel taxonomy depending on their architecture. We discuss the pros and cons of each category of techniques. We consider the various components of the problem including the choice of loss functions, evaluation criteria and the benchmark datasets used for evaluation. We present a comparison of the existing techniques using common datasets, providing insights into the relative rankings of these methods. We compare the network architectures based on their computation speed and the network complexity. We also discuss the limitations of existing loss functions and the evaluation criteria that are currently used and propose alternate suggestions. Finally, we identify some of the current challenges and provide future research directions towards video super-resolution, thus providing a comprehensive understanding of the problem.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.