Performance of off-the-shelf machine learning architectures and biases in low left ventricular ejection fraction detection

IF 2.5 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Heart Rhythm O2 Pub Date : 2024-09-01 DOI:10.1016/j.hroo.2024.07.009
Jake A. Bergquist PhD , Brian Zenger MD, PhD , James Brundage , Rob S. MacLeod PhD , T. Jared Bunch MD , Rashmee Shah MD, MS , Xiangyang Ye PhD , Ann Lyons PhD , Michael Torre PhD , Ravi Ranjan MD, PhD , Tolga Tasdizen PhD , Benjamin A. Steinberg MD, MHS
{"title":"Performance of off-the-shelf machine learning architectures and biases in low left ventricular ejection fraction detection","authors":"Jake A. Bergquist PhD ,&nbsp;Brian Zenger MD, PhD ,&nbsp;James Brundage ,&nbsp;Rob S. MacLeod PhD ,&nbsp;T. Jared Bunch MD ,&nbsp;Rashmee Shah MD, MS ,&nbsp;Xiangyang Ye PhD ,&nbsp;Ann Lyons PhD ,&nbsp;Michael Torre PhD ,&nbsp;Ravi Ranjan MD, PhD ,&nbsp;Tolga Tasdizen PhD ,&nbsp;Benjamin A. Steinberg MD, MHS","doi":"10.1016/j.hroo.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Artificial intelligence–machine learning (AI-ML) has demonstrated the ability to extract clinically useful information from electrocardiograms (ECGs) not available using traditional interpretation methods. There exists an extensive body of AI-ML research in fields outside of cardiology including several open-source AI-ML architectures that can be translated to new problems in an “off-the-shelf” manner.</p></div><div><h3>Objective</h3><p>We sought to address the limited investigation of which if any of these off-the-shelf architectures could be useful in ECG analysis as well as how and when these AI-ML approaches fail.</p></div><div><h3>Methods</h3><p>We applied 6 off-the-shelf AI-ML architectures to detect low left ventricular ejection fraction (LVEF) in a cohort of ECGs from 24,868 patients. We assessed LVEF classification and explored patient characteristics associated with inaccurate (false positive or false negative) LVEF prediction.</p></div><div><h3>Results</h3><p>We found that all of these network architectures produced LVEF detection area under the receiver-operating characteristic curve values above 0.9 (averaged over 5 instances per network), with the ResNet 18 network performing the highest (average area under the receiver-operating characteristic curve of 0.917). We also observed that some patient-specific characteristics such as race, sex, and presence of several comorbidities were associated with lower LVEF prediction performance.</p></div><div><h3>Conclusions</h3><p>This demonstrates the ability of off-the-shelf AI-ML architectures to detect clinically useful information from ECGs with performance matching contemporary custom-build AI-ML architectures. We also highlighted the presence of possible biases in these AI-ML approaches in the context of patient characteristics. These findings should be considered in the pursuit of efficient and equitable deployment of AI-ML technologies moving forward.</p></div>","PeriodicalId":29772,"journal":{"name":"Heart Rhythm O2","volume":"5 9","pages":"Pages 644-654"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666501824002289/pdfft?md5=70091853d69b920d35ca322b9f124330&pid=1-s2.0-S2666501824002289-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart Rhythm O2","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666501824002289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Artificial intelligence–machine learning (AI-ML) has demonstrated the ability to extract clinically useful information from electrocardiograms (ECGs) not available using traditional interpretation methods. There exists an extensive body of AI-ML research in fields outside of cardiology including several open-source AI-ML architectures that can be translated to new problems in an “off-the-shelf” manner.

Objective

We sought to address the limited investigation of which if any of these off-the-shelf architectures could be useful in ECG analysis as well as how and when these AI-ML approaches fail.

Methods

We applied 6 off-the-shelf AI-ML architectures to detect low left ventricular ejection fraction (LVEF) in a cohort of ECGs from 24,868 patients. We assessed LVEF classification and explored patient characteristics associated with inaccurate (false positive or false negative) LVEF prediction.

Results

We found that all of these network architectures produced LVEF detection area under the receiver-operating characteristic curve values above 0.9 (averaged over 5 instances per network), with the ResNet 18 network performing the highest (average area under the receiver-operating characteristic curve of 0.917). We also observed that some patient-specific characteristics such as race, sex, and presence of several comorbidities were associated with lower LVEF prediction performance.

Conclusions

This demonstrates the ability of off-the-shelf AI-ML architectures to detect clinically useful information from ECGs with performance matching contemporary custom-build AI-ML architectures. We also highlighted the presence of possible biases in these AI-ML approaches in the context of patient characteristics. These findings should be considered in the pursuit of efficient and equitable deployment of AI-ML technologies moving forward.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低左室射血分数检测中现成机器学习架构的性能和偏差
背景人工智能-机器学习(AI-ML)已证明有能力从心电图(ECG)中提取传统解读方法无法获得的临床有用信息。在心脏病学以外的领域也有大量的人工智能-机器学习研究,包括几种开源的人工智能-机器学习架构,它们可以以 "现成 "的方式应用于新问题。方法 我们应用了 6 种现成的人工智能-ML 架构来检测 24,868 名患者心电图中左心室射血分数(LVEF)偏低的情况。结果我们发现,所有这些网络架构检测左心室射血分数的受体运行特征曲线下面积值都超过了 0.9(每个网络 5 个实例的平均值),其中 ResNet 18 网络的性能最高(受体运行特征曲线下的平均面积为 0.917)。我们还观察到,一些患者的特异性特征,如种族、性别和是否患有多种并发症,与较低的 LVEF 预测性能有关。结论 这证明了现成的人工智能-ML 架构有能力从心电图中检测出临床有用的信息,其性能与当代定制的人工智能-ML 架构相当。我们还强调了这些人工智能-ML方法在患者特征方面可能存在的偏差。在追求高效、公平地部署人工智能-ML 技术的过程中,我们应该考虑这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heart Rhythm O2
Heart Rhythm O2 Cardiology and Cardiovascular Medicine
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Needle-free atrial transseptal access: A safe and reproducible alternative for left atrial catheterization Differences in clinical significance of atrial tachyarrhythmias in idiopathic ventricular fibrillation vs Brugada syndrome: A multicenter study Temporal changes in device-derived daily activity related to ventricular arrhythmias from the CERTITUDE registry Ventricular arrhythmias after atrial fibrillation electrical cardioversion: A multicenter study Ventricular tachycardia: Focal pulsed field electroporation as a rescue therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1