{"title":"Circular motion and collisions of spinning test particles around Kerr–Kiselev black holes","authors":"Tursinbay Oteev , Farukh Abdulkhamidov , Javlon Rayimbaev , Zdeněk Stuchlík , Bobomurat Ahmedov","doi":"10.1016/j.dark.2024.101588","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring the effect of exotic fields around black holes on particle dynamics may help to understand the nature of dark matter and energy. The quintessential field can be treated as one of such fields. In this work, we investigate the motion of spinning particles in the vicinity of rotating black holes immersed in quintessential dark energy, characterized by the equation of state (EoS) parameter <span><math><mrow><mi>ω</mi><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>;</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> governing the equation of state of the dark energy and dimensionless quintessential field parameter <span><math><mi>C</mi></math></span>. Using the Mathisson–Papapetrou–Dixon (MPD) equations, we derive the effective potential and study superluminal bound values for the particle spin. Also, we investigate the behaviors of the innermost and outermost stable circular orbit (ISCO & OSCO) of spinning test particles and their energy and angular momentum at the orbits. Note that the OSCO exists due to the third cosmological-like horizon caused by the quintessential field and shows that the ISCO and OSCO coincide at critical values of the quintessential field and EoS parameters, which also depend on the particle and black hole spin. Finally, we explore collisions of spinning particles and analyze the center-of-mass energies and critical angular momentum, which allows the collisions of the particles near the black hole.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101588"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001705","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the effect of exotic fields around black holes on particle dynamics may help to understand the nature of dark matter and energy. The quintessential field can be treated as one of such fields. In this work, we investigate the motion of spinning particles in the vicinity of rotating black holes immersed in quintessential dark energy, characterized by the equation of state (EoS) parameter governing the equation of state of the dark energy and dimensionless quintessential field parameter . Using the Mathisson–Papapetrou–Dixon (MPD) equations, we derive the effective potential and study superluminal bound values for the particle spin. Also, we investigate the behaviors of the innermost and outermost stable circular orbit (ISCO & OSCO) of spinning test particles and their energy and angular momentum at the orbits. Note that the OSCO exists due to the third cosmological-like horizon caused by the quintessential field and shows that the ISCO and OSCO coincide at critical values of the quintessential field and EoS parameters, which also depend on the particle and black hole spin. Finally, we explore collisions of spinning particles and analyze the center-of-mass energies and critical angular momentum, which allows the collisions of the particles near the black hole.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.