{"title":"YOLO-Drone: A Scale-Aware Detector for Drone Vision","authors":"Yutong Li;Miao Ma;Shichang Liu;Chao Yao;Longjiang Guo","doi":"10.23919/cje.2023.00.254","DOIUrl":null,"url":null,"abstract":"Object detection is an important task in drone vision. Since the number of objects and their scales always vary greatly in the drone-captured video, small object-oriented feature becomes the bottleneck of model performance, and most existing object detectors tend to underperform in drone-vision scenes. To solve these problems, we propose a novel detector named YOLO-Drone. In the proposed detector, the backbone of YOLO is firstly replaced with ConvNeXt, which is the state-of-the-art one to extract more discriminative features. Then, a novel scale-aware attention (SAA) module is designed in detection head to solve the large disparity scale problem. A scale-sensitive loss (SSL) is also introduced to put more emphasis on object scale to enhance the discriminative ability of the proposed detector. Experimental results on the latest VisDrone 2022 test-challenge dataset (detection track) show that our detector can achieve average precision (AP) of 39.43%, which is tied with the previous state-of-the-art, meanwhile, reducing 39.8% of the computational cost.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 4","pages":"1034-1045"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606208","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606208/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Object detection is an important task in drone vision. Since the number of objects and their scales always vary greatly in the drone-captured video, small object-oriented feature becomes the bottleneck of model performance, and most existing object detectors tend to underperform in drone-vision scenes. To solve these problems, we propose a novel detector named YOLO-Drone. In the proposed detector, the backbone of YOLO is firstly replaced with ConvNeXt, which is the state-of-the-art one to extract more discriminative features. Then, a novel scale-aware attention (SAA) module is designed in detection head to solve the large disparity scale problem. A scale-sensitive loss (SSL) is also introduced to put more emphasis on object scale to enhance the discriminative ability of the proposed detector. Experimental results on the latest VisDrone 2022 test-challenge dataset (detection track) show that our detector can achieve average precision (AP) of 39.43%, which is tied with the previous state-of-the-art, meanwhile, reducing 39.8% of the computational cost.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.