Root parameters and water productivity of rice and wheat in a rice‒wheat cropping system as influenced by enriched compost and crop establishment methods
{"title":"Root parameters and water productivity of rice and wheat in a rice‒wheat cropping system as influenced by enriched compost and crop establishment methods","authors":"","doi":"10.1016/j.jafr.2024.101317","DOIUrl":null,"url":null,"abstract":"<div><p>Food security worldwide is largely dependent on the rice–wheat cropping sequence (RWCS) Hence, a field study was carried out during 2018–19 and 2019–20 at ICAR-IARI, New Delhi, to determine the effect of various enriched organic sources and crop establishment methods on the root parameters, water productivity and yield of rice, its carryover effect on the succeeding wheat crop and the overall efficiency of system. A split plot design was used which involved two main plot treatments, viz., aerobic rice (AR) and conventional transplanted (CT) rice, and five subplot treatments, viz., T1: control (without fertilizer), T2: 100 % RDF (100 % fertilization by using inorganic sources), T3: 50 % phosphorus was applied by using P-enriched compost + 50 % P was applied by using DAP, T4: 50 % N was applied by using N-enriched compost + 50 % nitrogen was applied by using DAP and urea, and T5: 100 % organic fertilizer was applied (100 % fertilization by using N-enriched compost and P-enriched compost). After rice, wheat was grown in all the plots under uniform management practices. Among the nutrient sources, T4 had greater effects on root activity, system economic water productivity and system water productivity than did the other treatments. CT rice can be recommended under irrigated conditions with the integration of enriched compost and inorganic fertilizers. However, under rainfed conditions with less available water, aerobic rice can also be produced by combining enriched compost and inorganic fertilizer.</p></div>","PeriodicalId":34393,"journal":{"name":"Journal of Agriculture and Food Research","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666154324003545/pdfft?md5=010d1c10a5665b969b2b62eecc3ee7d7&pid=1-s2.0-S2666154324003545-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture and Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666154324003545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Food security worldwide is largely dependent on the rice–wheat cropping sequence (RWCS) Hence, a field study was carried out during 2018–19 and 2019–20 at ICAR-IARI, New Delhi, to determine the effect of various enriched organic sources and crop establishment methods on the root parameters, water productivity and yield of rice, its carryover effect on the succeeding wheat crop and the overall efficiency of system. A split plot design was used which involved two main plot treatments, viz., aerobic rice (AR) and conventional transplanted (CT) rice, and five subplot treatments, viz., T1: control (without fertilizer), T2: 100 % RDF (100 % fertilization by using inorganic sources), T3: 50 % phosphorus was applied by using P-enriched compost + 50 % P was applied by using DAP, T4: 50 % N was applied by using N-enriched compost + 50 % nitrogen was applied by using DAP and urea, and T5: 100 % organic fertilizer was applied (100 % fertilization by using N-enriched compost and P-enriched compost). After rice, wheat was grown in all the plots under uniform management practices. Among the nutrient sources, T4 had greater effects on root activity, system economic water productivity and system water productivity than did the other treatments. CT rice can be recommended under irrigated conditions with the integration of enriched compost and inorganic fertilizers. However, under rainfed conditions with less available water, aerobic rice can also be produced by combining enriched compost and inorganic fertilizer.