A New High-Performance Porous Carbon-Coated Mn3O4/Na2CO3 Cathode for Suppressing Mn 2+ Dissolution in Aqueous Zinc Ion Batteries.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2024-07-31 DOI:10.1002/asia.202400290
Guangxing Pan, Yuanyuan Hu, Zhenyuan Wang, Hao Li, Dong Wu, Ling Zhang, Jiaheng Zhang
{"title":"A New High-Performance Porous Carbon-Coated Mn3O4/Na2CO3 Cathode for Suppressing Mn 2+ Dissolution in Aqueous Zinc Ion Batteries.","authors":"Guangxing Pan, Yuanyuan Hu, Zhenyuan Wang, Hao Li, Dong Wu, Ling Zhang, Jiaheng Zhang","doi":"10.1002/asia.202400290","DOIUrl":null,"url":null,"abstract":"<p><p>Manganous-manganic oxide (Mn3O4), akin to other manganese-based oxides, faces several critical challenges such as substantial capacity fading and limited rate performance due to its inferior electrical conductivity, in addition to the inevitable dissociation of Mn 2+ . To address these issues, we introduce for the first time a novel carbon-coated Mn3O4/Na2CO3 (Mn3O4/Na2CO3/C) composite material. Comprehensive characterizations indicate that Na2CO3 effectively curtails Mn 2+ dissolution, enhances carbon encapsulation throughout charging/discharging cycles, and exposes additional active sites on the Mn3O4/Na2CO3/C composite. Electrochemical assessments confirm that the Mn3O4/Na2CO3/C-2 cathode exhibits exceptional electrochemical performance, outperforming other cathodes in the ZnSO4 system. Moreover, the Mn3O4/Na2CO3/C-2 cathode delivers a high specific capacity of ~550 mAh g -1 at 0.1 A g -1 and maintains a significant capacity of ~230 mAh g -1 after 360 cycles at 1.0 A g -1 within the 2.0 M ZnSO4+0.2 M MnSO4 electrolyte system, demonstrating its potential as a high-performance cathode material for aqueous zinc-ion batteries.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400290","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manganous-manganic oxide (Mn3O4), akin to other manganese-based oxides, faces several critical challenges such as substantial capacity fading and limited rate performance due to its inferior electrical conductivity, in addition to the inevitable dissociation of Mn 2+ . To address these issues, we introduce for the first time a novel carbon-coated Mn3O4/Na2CO3 (Mn3O4/Na2CO3/C) composite material. Comprehensive characterizations indicate that Na2CO3 effectively curtails Mn 2+ dissolution, enhances carbon encapsulation throughout charging/discharging cycles, and exposes additional active sites on the Mn3O4/Na2CO3/C composite. Electrochemical assessments confirm that the Mn3O4/Na2CO3/C-2 cathode exhibits exceptional electrochemical performance, outperforming other cathodes in the ZnSO4 system. Moreover, the Mn3O4/Na2CO3/C-2 cathode delivers a high specific capacity of ~550 mAh g -1 at 0.1 A g -1 and maintains a significant capacity of ~230 mAh g -1 after 360 cycles at 1.0 A g -1 within the 2.0 M ZnSO4+0.2 M MnSO4 electrolyte system, demonstrating its potential as a high-performance cathode material for aqueous zinc-ion batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于抑制锌离子水电池中 Mn 2+ 溶解的新型高性能多孔碳涂层 Mn3O4/Na2CO3 阴极
锰-锰氧化物(Mn3O4)与其他锰基氧化物一样,也面临着一些严峻的挑战,如由于其导电性较差,除了不可避免地解离出 Mn 2+ 外,还存在容量大幅衰减和速率性能受限等问题。为了解决这些问题,我们首次推出了一种新型碳涂层 Mn3O4/Na2CO3(Mn3O4/Na2CO3/C)复合材料。全面的特性分析表明,Na2CO3 能有效抑制 Mn 2+ 的溶解,在整个充电/放电循环过程中增强碳的包裹性,并在 Mn3O4/Na2CO3/C 复合材料上暴露出更多的活性位点。电化学评估证实,Mn3O4/Na2CO3/C-2 阴极具有优异的电化学性能,优于 ZnSO4 系统中的其他阴极。此外,在 2.0 M ZnSO4+0.2 MnSO4 电解质体系中,Mn3O4/Na2CO3/C-2 阴极在 0.1 A g -1 电流条件下可提供约 550 mAh g -1 的高比容量,在 1.0 A g -1 电流条件下循环 360 次后仍可保持约 230 mAh g -1 的显著容量,这表明它具有作为水性锌离子电池高性能阴极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Achieving excellent H2 evolution activity of silver nanocatalyst by a simple electrochemical treatment process. Amino-Terephthalonitrile and Amino-Terephthalate-Based Single Benzene Fluorophores - Compact Color Tunable Molecular Dyes for Bioimaging and Bioanalysis. Constructing a non-noble metal WC/CaIn2S4 Schottky heterojunction photocatalyst for enhanced photocatalytic H2 production. Recent advancements in Fe-based catalysts for the efficient reduction of NOx by CO. Revisiting the Reaction of Sulfur Ylides with Acetylenic Esters: Synthesis of Trisubstituted 1,3-Dienes, α-Carbonyl Vinyl Sulfoxides and α-Carbonyl Vinyl Sulfoxonium Ylides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1