Chan Mi Park , Gun Su Cha , Hae Chan Jeong , Yu-jin Lee , Jeong-Hoon Kim , Moon-Soo Chung , Sungbeom Lee , Chul-Ho Yun
{"title":"Epoxidation of perillyl alcohol by engineered bacterial cytochrome P450 BM3","authors":"Chan Mi Park , Gun Su Cha , Hae Chan Jeong , Yu-jin Lee , Jeong-Hoon Kim , Moon-Soo Chung , Sungbeom Lee , Chul-Ho Yun","doi":"10.1016/j.enzmictec.2024.110487","DOIUrl":null,"url":null,"abstract":"<div><p>Perillyl alcohol (POH) is a secondary metabolite of plants. POH and its derivatives are known to be effective as an anticancer treatment. In this study, oxidative derivatives of POH, which are difficult to synthesize chemically, were synthesized using the engineered bacterial cytochrome P450 BM3 (CYP102A1) as a biocatalyst. The activity of wild-type (WT) CYP102A1 and 29 engineered enzymes toward POH was screened using a high-performance liquid chromatography. They produced one major product. Among them, the engineered CYP102A1 M601 mutant with seven mutations (R47L/F81I/F87V/E143G/L150F/L188Q/E267V) showed the highest conversion, 6.4-fold higher than the WT. Structure modeling using AlphFold2 and PyMoL suggests that mutations near the water channel may be responsible for the increased catalytic activity of the M601 mutant. The major product was identified as a POH-8,9-epoxide by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis. The optimal temperature and pH for the product formation were 35 °C and pH 7.4, respectively. The <em>k</em><sub>cat</sub> and <em>K</em><sub>m</sub> of M601 were 540 min<sup>−1</sup> and 2.77 mM, respectively. To improve POH-8,9-epoxide production, substrate concentration and reaction time were optimized. The optimal condition for POH-8,9-epoxide production by M601 was 5.0 mM POH, pH 7.4, 35 ℃, and 6 h reaction, which produced the highest concentration of 1.72 mM. Therefore, the biosynthesis of POH-8,9-epoxide using M601 as a biocatalyst is suggested to be an efficient and sustainable synthetic process that can be applied to chemical and pharmaceutical industries.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000942","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perillyl alcohol (POH) is a secondary metabolite of plants. POH and its derivatives are known to be effective as an anticancer treatment. In this study, oxidative derivatives of POH, which are difficult to synthesize chemically, were synthesized using the engineered bacterial cytochrome P450 BM3 (CYP102A1) as a biocatalyst. The activity of wild-type (WT) CYP102A1 and 29 engineered enzymes toward POH was screened using a high-performance liquid chromatography. They produced one major product. Among them, the engineered CYP102A1 M601 mutant with seven mutations (R47L/F81I/F87V/E143G/L150F/L188Q/E267V) showed the highest conversion, 6.4-fold higher than the WT. Structure modeling using AlphFold2 and PyMoL suggests that mutations near the water channel may be responsible for the increased catalytic activity of the M601 mutant. The major product was identified as a POH-8,9-epoxide by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis. The optimal temperature and pH for the product formation were 35 °C and pH 7.4, respectively. The kcat and Km of M601 were 540 min−1 and 2.77 mM, respectively. To improve POH-8,9-epoxide production, substrate concentration and reaction time were optimized. The optimal condition for POH-8,9-epoxide production by M601 was 5.0 mM POH, pH 7.4, 35 ℃, and 6 h reaction, which produced the highest concentration of 1.72 mM. Therefore, the biosynthesis of POH-8,9-epoxide using M601 as a biocatalyst is suggested to be an efficient and sustainable synthetic process that can be applied to chemical and pharmaceutical industries.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.