Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model.

IF 1.9 3区 医学 Q2 OTORHINOLARYNGOLOGY European Archives of Oto-Rhino-Laryngology Pub Date : 2024-12-01 Epub Date: 2024-07-31 DOI:10.1007/s00405-024-08862-z
Elif Meltem Aslan Öztürk, Gürkan Ünsal, Ferhat Erişir, Kaan Orhan
{"title":"Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model.","authors":"Elif Meltem Aslan Öztürk, Gürkan Ünsal, Ferhat Erişir, Kaan Orhan","doi":"10.1007/s00405-024-08862-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Radiomics, a recently developed image-processing technology, holds potential in medical diagnostics. This study aimed to propose a machine-learning (ML) model and evaluate its effectiveness in detecting oral squamous cell carcinoma (OSCC) and predicting bone metastasis using magnetic resonance imaging (MRI).</p><p><strong>Materials-methods: </strong>MRI radiomic features were extracted and analyzed to identify malignant lesions. A total of 86 patients (44 with benign lesions without bone invasion and 42 with malignant lesions with bone invasion) were included. Data and clinical information were managed using the RadCloud Platform (Huiying Medical Technology Co., Ltd., Beijing, China). The study employed a hand-crafted radiomics model, with the dataset randomly split into training and validation sets in an 8:2 ratio using 815 random seeds.</p><p><strong>Results: </strong>The results revealed that the ML method support vector machine (SVM) performed best for detecting bone invasion (AUC = 0.999) in the test set. Radiomics tumor features derived from MRI are useful to predicting bone invasion from oral squamous cell carcinoma with high accuracy.</p><p><strong>Conclusions: </strong>This study introduces an ML model utilizing SVM and radiomics to predict bone invasion in OSCC. Despite the promising results, the small sample size necessitates larger multicenter studies to validate and expand these findings.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":" ","pages":"6585-6597"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00405-024-08862-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Radiomics, a recently developed image-processing technology, holds potential in medical diagnostics. This study aimed to propose a machine-learning (ML) model and evaluate its effectiveness in detecting oral squamous cell carcinoma (OSCC) and predicting bone metastasis using magnetic resonance imaging (MRI).

Materials-methods: MRI radiomic features were extracted and analyzed to identify malignant lesions. A total of 86 patients (44 with benign lesions without bone invasion and 42 with malignant lesions with bone invasion) were included. Data and clinical information were managed using the RadCloud Platform (Huiying Medical Technology Co., Ltd., Beijing, China). The study employed a hand-crafted radiomics model, with the dataset randomly split into training and validation sets in an 8:2 ratio using 815 random seeds.

Results: The results revealed that the ML method support vector machine (SVM) performed best for detecting bone invasion (AUC = 0.999) in the test set. Radiomics tumor features derived from MRI are useful to predicting bone invasion from oral squamous cell carcinoma with high accuracy.

Conclusions: This study introduces an ML model utilizing SVM and radiomics to predict bone invasion in OSCC. Despite the promising results, the small sample size necessitates larger multicenter studies to validate and expand these findings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于磁共振成像的机器学习模型预测口腔鳞状细胞癌的骨侵袭。
目的:放射组学是最近开发的一种图像处理技术,在医学诊断方面具有潜力。本研究旨在提出一种机器学习(ML)模型,并评估其在利用磁共振成像(MRI)检测口腔鳞状细胞癌(OSCC)和预测骨转移方面的有效性:提取并分析磁共振成像放射学特征,以识别恶性病变。共纳入 86 例患者(44 例为无骨侵犯的良性病变,42 例为有骨侵犯的恶性病变)。数据和临床信息通过RadCloud平台(汇盈医疗科技有限公司,中国北京)进行管理。研究采用手工创建的放射组学模型,使用815个随机种子将数据集按8:2的比例随机分成训练集和验证集:结果表明,在测试集中,ML方法支持向量机(SVM)在检测骨侵犯方面表现最佳(AUC = 0.999)。从核磁共振成像中提取的放射组学肿瘤特征有助于预测口腔鳞状细胞癌的骨侵犯,准确率很高:本研究介绍了一种利用 SVM 和放射组学预测 OSCC 骨侵犯的 ML 模型。尽管结果很有希望,但由于样本量较小,有必要进行更大规模的多中心研究来验证和扩展这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
7.70%
发文量
537
审稿时长
2-4 weeks
期刊介绍: Official Journal of European Union of Medical Specialists – ORL Section and Board Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery "European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level. European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.
期刊最新文献
Correction: Endoscopic ear surgery in the treatment of chronic otitis media with atelectasis. Correction: A novel olfactory sorting task. Cochlear implantation in patients with inner ear schwannomas: a systematic review and meta-analysis of audiological outcomes. Efficacy and safety of middle turbinate surgery: a systematic review. Idiopathic sudden sensorineural hearing loss after COVID-19 vaccination: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1